A general formula for the algebraic degree in semidefinite programming

被引:24
作者
Graf von Bothmer, Hans-Christian [1 ]
Ranestad, Kristian [2 ]
机构
[1] Leibnitz Univ Hannover, Inst Algebra Geometrie, D-30167 Hannover, Germany
[2] Univ Oslo, Matematisk Inst, NO-0316 Oslo, Norway
关键词
D O I
10.1112/blms/bdn114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we use a natural desingularization of the conormal variety of (n x n)-symmetric matrices of rank at most r to find a general formula for the algebraic degree in semidefinite programming.
引用
收藏
页码:193 / 197
页数:5
相关论文
共 4 条
[1]   ON GIAMBELLI THEOREM ON COMPLETE CORRELATIONS [J].
LAKSOV, D ;
LASCOUX, A ;
THORUP, A .
ACTA MATHEMATICA, 1989, 162 (3-4) :143-199
[2]  
LASCOUX A, 1975, CR ACAD SCI A MATH, V281, P813
[3]  
LASCOUX A, 1975, CR HEBD ACAD SCI, V2, P851
[4]   The algebraic degree of semidefinite programming [J].
Nie, Jiawang ;
Ranestad, Kristian ;
Sturmfels, Bernd .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :379-405