Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries

被引:24
作者
Song, Huawei [1 ]
Li, Na [1 ]
Cui, Hao [1 ,2 ]
Wang, Chengxin [1 ,2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Sch Phys Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Zhongshan Univ, Key Lab Low Carbon Chem & Energy Conservat Guangd, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Monodisperse; SnO2; nanocrystals; hydrothermal; long lifespan; Li-ion battery anode; TEMPLATE-FREE SYNTHESIS; ELECTROCHEMICAL LITHIATION; TIN; STORAGE; OXIDE; PERFORMANCE; ELECTRODES; NANOWIRES; COMPOSITE; NANOSTRUCTURES;
D O I
10.1016/j.electacta.2013.12.052
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A facile way towards high rate and long lifespan anode materials based on SnO2 and commercial multiwalled carbon nanotubes (MWCNTs) is readily achieved through a combination of activation and hydrothermal treatment. The former endows the MWCNTs with abundant hydrophilic radicals, while the latter guarantees intimate connection between SnO2 and MWCNTs; eventually, monodisperse SnO2 nanocrystals ca. 3 nm are firmly anchored on the MWCNTs without agglomeration. When used for lithium ion batteries (LIBs) anodes, the hybrid composite exhibits excellent cycling capability with high reversible capacity about 700 mAh g(-1) (based on total weight of the composite) for 150 cycles at 0.1 A g(-1) superior to both components involved. Besides large rates of 5 A g(-1) with recoverable initial reversible capacity, it also last for more than 1000 cycles with little capacity decay, outperforming most SnO2 based carbon nanotubes composites (SnO2/CNTs) so far. Insights into the electrochemical processes reveal the hybrid composite exhibits enhanced redox capacitance and interfacial capacitance in comparison with SnO2 nanocrystals which indicate the perfect interfaces and robust structure of the hybrid composite. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 42 条
[11]   Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries [J].
Guo, Juchen ;
Xu, Yunhua ;
Wang, Chunsheng .
NANO LETTERS, 2011, 11 (10) :4288-4294
[12]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[13]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[14]  
Jae-Chan K., 2012, NANOTECHNOLOGY, V23
[15]   Critical size of a nano SnO2 electrode for Li-secondary battery [J].
Kim, C ;
Noh, M ;
Choi, M ;
Cho, J ;
Park, B .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3297-3301
[16]   Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for li ion battery electrodes [J].
Kim, Dong-Wan ;
Hwang, In-Sung ;
Kwon, S. Joon ;
Kang, Hae-Yong ;
Park, Kyung-Soo ;
Choi, Young-Jin ;
Choi, Kyoung-Jin ;
Park, Jae-Gwan .
NANO LETTERS, 2007, 7 (10) :3041-3045
[17]   Controllable fabrication of SnO2-coated nanotubes by chemical vapor multiwalled carbon deposition [J].
Kuang, Q ;
Li, SF ;
Xie, ZX ;
Lin, SC ;
Zhang, XH ;
Xie, SY ;
Huang, RB ;
Zheng, LS .
CARBON, 2006, 44 (07) :1166-1172
[18]   Carbon nanotubes for lithium ion batteries [J].
Landi, Brian J. ;
Ganter, Matthew J. ;
Cress, Cory D. ;
DiLeo, Roberta A. ;
Raffaelle, Ryne P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :638-654
[19]  
Lee SW, 2010, NAT NANOTECHNOL, V5, P531, DOI [10.1038/NNANO.2010.116, 10.1038/nnano.2010.116]
[20]   SnO2-carbon-RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries [J].
Li, Baojun ;
Cao, Huaqiang ;
Zhang, Jingxian ;
Qu, Meizhen ;
Lian, Fang ;
Kong, Xianghua .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (07) :2851-2854