Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration

被引:569
作者
He, Wei [1 ,2 ]
Zhang, Hongyan [1 ,2 ]
Zhang, Liangpei [1 ,2 ]
Shen, Huanfeng [2 ,3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 01期
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI); low-rank matrix factorization; rank constraint; restoration; total variation (TV); SPARSE REPRESENTATION; NOISE-REDUCTION; ALGORITHMS; QUALITY;
D O I
10.1109/TGRS.2015.2452812
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and L-1-norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the L-1-norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration.
引用
收藏
页码:176 / 188
页数:13
相关论文
共 48 条
[1]  
[Anonymous], 2014, CONSTRAINED OPTIMIZA
[2]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[5]  
Cai JF, 2008, INVERSE PROBL IMAG, V2, P187
[6]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[7]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[8]   RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION [J].
Chandrasekaran, Venkat ;
Sanghavi, Sujay ;
Parrilo, Pablo A. ;
Willsky, Alan S. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (02) :572-596
[9]   Interference and noise-adjusted principal components analysis [J].
Chang, CI ;
Du, Q .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2387-2396
[10]   Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage [J].
Chen, Guangyi ;
Qian, Shen-En .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03) :973-980