An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

被引:0
作者
Scetbon, Meyer [1 ]
Meunier, Laurent [2 ,3 ]
Romano, Yaniv [4 ,5 ]
机构
[1] ENSAE, CREST, Paris, France
[2] Facebook AI Res, Paris, France
[3] Univ Paris 09, Paris, France
[4] Technion, Dept Elect & Comp Engn, Haifa, Israel
[5] Technion, Dept Comp Sci, Haifa, Israel
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162 | 2022年
基金
以色列科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new conditional dependence measure and a statistical test for conditional independence. The measure is based on the difference between analytic kernel embeddings of two well-suited distributions evaluated at a finite set of locations. We obtain its asymptotic distribution under the null hypothesis of conditional independence and design a consistent statistical test from it. We conduct a series of experiments showing that our new test outperforms state-of-the-art methods both in terms of type-I and type-II errors even in the high dimensional setting.
引用
收藏
页码:19328 / 19346
页数:19
相关论文
共 49 条
[1]  
[Anonymous], 2008, Advances in Neural Information Processing Systems
[2]   A SIMPLE MEASURE OF CONDITIONAL DEPENDENCE [J].
Azadkia, Mona ;
Chatterjee, Sourav .
ANNALS OF STATISTICS, 2021, 49 (06) :3070-3102
[3]  
Bellot A., 2019, Advances in Neural Information Processing Systems, P2199
[4]  
BERGSMA W. P, 2004, Testing conditional independence for continuous random variables
[5]   The conditional permutation test for independence while controlling for confounders [J].
Berrett, Thomas B. ;
Wang, Yi ;
Barber, Rina Foygel ;
Samworth, Richard J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (01) :175-197
[6]   Panning for gold: "model-X' knockoffs for high dimensional controlled variable selection [J].
Candes, Emmanuel ;
Fan, Yingying ;
Janson, Lucas ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (03) :551-577
[7]  
Caponnetto A, 2007, FOUND COMPUT MATH, V7, P331, DOI 10.1007/S10208-006-0196-8
[8]  
Chalupka K, 2018, Arxiv, DOI arXiv:1804.02747
[9]  
Chwialkowski K, 2015, ADV NEUR IN, V28
[10]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280