ASYMPTOTIC PSEUDOMODES OF TOEPLITZ MATRICES

被引:0
作者
Boettcher, Albrecht [1 ]
Grudsky, Sergei [2 ]
Unterberger, Jeremie [3 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] IPN, Dept Matemat, CINVESTAV, Mexico City 07000, DF, Mexico
[3] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
OPERATORS AND MATRICES | 2008年 / 2卷 / 04期
关键词
Toeplitz matrix; Fisher-Hartwig symbol; eigenvector; pseudomode; fractional Brownian motion;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Questions in probability and statistical physics lead to the problem of finding the eigenvectors associated with the extreme eigenvalues of Toeplitz matrices generated by Fisher-Hartwig symbols. We here simplify the problem and consider pseudomodes instead of eigenvectors. This replacement allows us to treat fairly general symbols, which are far beyond Fisher-Hartwig symbols. Our main result delivers a variety of concrete unit vectors x(n) such that if T-n(a) is the n x n truncation of the infinite Toeplitz matrix generated by a function a is an element of L-1 satisfying mild additional conditions and. is in the range of this function, then parallel to T-n(a)x(n) -lambda x(n)parallel to -> 0.
引用
收藏
页码:525 / 541
页数:17
相关论文
共 20 条
[1]   CRITICAL PHENOMENA IN SYSTEMS OF FINITE THICKNESS .1. SPHERICAL MODEL [J].
BARBER, MN ;
FISHER, ME .
ANNALS OF PHYSICS, 1973, 77 (1-2) :1-78
[2]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835
[3]   Norms of Toeplitz matrices with Fisher-Hartwig symbols [J].
Boettcher, Albrecht ;
Virtanen, Jani .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) :660-671
[4]  
Böttcher A, 2004, OPER THEOR, V147, P175
[5]  
Böttcher A, 2003, FACTORIZATION, SINGULAR OPERATORS AND RELATED PROBLEMS, PROCEEDINGS, P43
[6]  
Böttcher A, 2002, SIAM J MATRIX ANAL A, V24, P484, DOI 10.1137/S0895479800376971
[7]   TOEPLITZ MATRICES AND DETERMINANTS WITH FISHER-HARTWIG SYMBOLS [J].
BOTTCHER, A ;
SILBERMANN, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (02) :178-214
[8]  
BRANKOV JG, 2002, SERIES MODERN CONDEN, V9
[9]  
Gohberg I., 1974, Convolution Equations and Projection Methods for Their Solution
[10]  
KAC M, 1953, J RATION MECH ANAL, V2, P767