Molecular basis of proton blockage in aquaporins

被引:123
作者
Chakrabarti, N
Tajkhorshid, E
Roux, B
Pomès, R
机构
[1] Hosp Sick Children, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON, Canada
[3] Univ Illinois, Beckman Inst, Theoret & Computat Biophys Grp, Urbana, IL 61801 USA
[4] Cornell Univ, Weill Med Coll, Dept Biochem, New York, NY 10021 USA
基金
加拿大健康研究院;
关键词
D O I
10.1016/j.str.2003.11.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Water transport channels in membrane proteins of the aquaporin superfamily are impermeable to ions, including H+ and OH-. We examine the molecular basis for the blockage of proton translocation through the single-file water chain in the pore of a bacterial aquaporin, GIpF. We compute the reversible thermodynamic work for the two complementary steps of the Grotthuss "hop-and-turn" relay mechanism: consecutive transfers of H+ along the hydrogen-bonded chain (hop) and conformational reorganization of the chain (turn). In the absence of H+, the strong preference for the bipolar orientation of water around the two Asn-Pro-Ala (NPA) motifs lining the pore over both unidirectional polarization states of the chain precludes the reorganization of the hydrogen-bonded network. Inversely, translocation of an excess proton in either direction is opposed by a free-energy barrier centered at the NPA region. Both hop and turn steps of proton translocation are opposed by the electrostatic field of the channel.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   The aquaporins, blueprints for cellular plumbing systems [J].
Agre, P ;
Bonhivers, M ;
Borgnia, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14659-14662
[3]   PROTON CONDUCTANCE BY THE GRAMICIDIN WATER WIRE - MODEL FOR PROTON CONDUCTANCE IN THE F1F0 ATPASES [J].
AKESON, M ;
DEAMER, DW .
BIOPHYSICAL JOURNAL, 1991, 60 (01) :101-109
[4]   Cellular and molecular biology of the aquaporin water channels [J].
Borgnia, M ;
Nielsen, S ;
Engel, A ;
Agre, P .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :425-458
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]  
Burgess J., 1978, METAL IONS SOLUTION
[7]   Model for aqueous solvation based on class IV atomic charges and first solvation shell effects [J].
Chambers, CC ;
Hawkins, GD ;
Cramer, CJ ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (40) :16385-16398
[8]   Water permeation across biological membranes:: Mechanism and dynamics of aquaporin-1 and GlpF [J].
de Groot, BL ;
Grubmüller, H .
SCIENCE, 2001, 294 (5550) :2353-2357
[9]  
DENKER BM, 1988, J BIOL CHEM, V263, P15634
[10]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294