An experimental study and numerical modeling of combusting two coal chars in a drop-tube reactor: A comparison between N2/O2, CO2/O2, and N2/CO2/O2 atmospheres

被引:33
|
作者
Tolvanen, Henrik [1 ]
Raiko, Risto [1 ]
机构
[1] Tampere Univ Technol, Dept Chem & Bioengn, Tampere 33720, Finland
关键词
Char combustion; Coal; Chemical kinetics; Carbon dioxide; Oxy-fuel; OXY-FUEL COMBUSTION; PULVERIZED-COAL; PARTICLE COMBUSTION; O-2/N-2; GASIFICATION; DEVOLATILIZATION; OXIDATION; IGNITION; KINETICS; CO2;
D O I
10.1016/j.fuel.2014.01.103
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this study was to examine how CO2 affects the burning behavior of two coal chars, char 1 and char 2. The work consisted of experiments and numerical modeling. The experiments were conducted under high heating rates in a laboratory-scale drop-tube reactor (DTR). The char samples were produced by pyrolyzing coal particles in the DTR at 850 degrees C in pure N-2. Before pyrolysis, the coal particles were ground and sieved to a particle size fraction of 100-125 mu m. The mass loss of the char particles was determined after the DTR combustion process. The surface temperature of the char particles was measured with a two-color pyrometer during combustion. The diameter evolution and the falling velocity of the particles were studied optically with a CCD high-speed camera. The oxygen concentrations used in the measurements were 2-12 vol.% in either N-2 or CO2. The combustion was assumed to take place within the Zone I and Zone II regimes. Zone I describes the conditions where the combustion process is controlled by chemical kinetics. In Zone II both chemical kinetics and intraparticle diffusion control the combustion. With char 2 the effect of replacing N-2 gradually with CO2 was also tested. This was done for the purpose of examining the interactions of the oxidation and CO2 gasification reactions. When the N-2 was entirely replaced with CO2 from the reactor atmosphere, the mass loss rate of both chars decreased slightly compared to the N-2 setting. A more drastic decrease was observed in the particle surface temperature. This study also presents the numerical modeling results of combusting the two coal chars in the DTR in N-2/O-2 and CO2/O-2 atmospheres. The apparent chemical kinetic parameters of the oxidation reactions were calculated based on the measurement results in the N-2/O-2 atmosphere. The apparent chemical kinetic parameters of the CO2 gasification reaction were also calculated for char 2. In the modeling calculations the internal heat transfer of the char particles, oxygen diffusion in the boundary layer, Stefan flow, and the size distribution of the particles were taken into consideration. The modeling results indicated the importance of determining the initial size distribution of the sample particles. An average diameter model could not explain the large variation in the measured particle surface temperatures. As a result, a comparison between the modeling results and the measurement results suggested that high CO2 partial pressure in the combustion atmosphere can affect the combustion process in other ways than merely through the differences in the gas properties. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 50 条
  • [21] Modeling char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres
    Brix, Jacob
    Jensen, Peter Arendt
    Jensen, Anker Degn
    FUEL, 2011, 90 (06) : 2224 - 2239
  • [22] Experimental Study on Mercury Oxidation in a Fluidized Bed under O2/CO2 and O2/N2 Atmospheres
    Wang, Hui
    Duan, Yufeng
    Li, Ya-ning
    Liu, Meng
    ENERGY & FUELS, 2016, 30 (06) : 5065 - 5070
  • [23] Simultaneous investigation of coal ignition and soot formation in two-stage O2/N2 and O2/CO2 atmospheres
    Ma, Peng
    Huang, Qian
    Yang, Yuanping
    Ji, Renshan
    Li, Shuiqing
    FUEL, 2022, 314
  • [24] Comparison of Particle Size Evolution during Pulverized Coal Combustion in O2/CO2 and O2/N2 Atmospheres
    Chen, Yuan
    Wang, Guoliang
    Sheng, Changdong
    ENERGY & FUELS, 2014, 28 (01) : 136 - 145
  • [25] Fluidized Bed Incineration of Sewage Sludge in O2/N2 and O2/CO2 Atmospheres
    Mosko, Jaroslav
    Pohorely, Michael
    Zach, Boleslav
    Svoboda, Karel
    Durda, Tomas
    Jeremias, Michal
    Syc, Michal
    Vaclavkova, Sarka
    Skoblia, Siarhei
    Beno, Zdenek
    Brynda, Jiri
    ENERGY & FUELS, 2018, 32 (02) : 2355 - 2365
  • [26] Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, ZhiYi
    BIORESOURCE TECHNOLOGY, 2011, 102 (02) : 1879 - 1885
  • [27] Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: A combination of visual image and particle temperature
    Bu, Changsheng
    Liu, Daoyin
    Chen, Xiaoping
    Pallares, David
    Gomez-Barea, Alberto
    APPLIED ENERGY, 2014, 115 : 301 - 308
  • [28] Decomposition of key minerals in coal gangues during combustion in O2/N2 and O2/CO2 atmospheres
    Zhang, Yuanyuan
    Zhang, Zhezi
    Zhu, Mingming
    Cheng, Fangqin
    Zhang, Dongke
    APPLIED THERMAL ENGINEERING, 2019, 148 : 977 - 983
  • [29] Pyrolysis and Combustion Behavior of Coal Gangue in O2/CO2 and O2/N2 Mixtures Using Thermogravimetric Analysis and a Drop Tube Furnace
    Meng, Fanrui
    Yu, Jianglong
    Tahmasebi, Arash
    Han, Yanna
    ENERGY & FUELS, 2013, 27 (06) : 2923 - 2932
  • [30] ReaxFF Study of Ethanol Oxidation in O2/N2 and O2/CO2 Environments at High Temperatures
    Arvelos, Sarah
    Hori, Carla Eponina
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (02) : 700 - 713