A new visual cryptographic scheme using latin squares

被引:0
作者
Adhikari, A [1 ]
Bose, M [1 ]
机构
[1] Indian Stat Inst, Appl Stat Unit, Kolkata 700035, W Bengal, India
来源
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES | 2004年 / E87A卷 / 05期
关键词
secret sharing scheme; visual secret sharing scheme; visual cryptography; BIBD; latin square;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Combinatorial designs are normally used to construct visual cryptographic schemes. For such schemes two parameters are very important viz. pixel expansion and contrast. Optimizing both is a very hard problem. The schemes having optimal contrast tend to use a high pixel expansion. The focus of the paper is to construct schemes for which pixel expansion is modest and the contrast is close to optimality. Here the tool is latin squares that haven't been used earlier for this purpose.
引用
收藏
页码:1198 / 1202
页数:5
相关论文
共 50 条
  • [41] Partial Latin Squares Are Avoidable
    Ohman, Lars-Daniel
    ANNALS OF COMBINATORICS, 2011, 15 (03) : 485 - 497
  • [42] A generalization of plexes of Latin squares
    Pula, Kyle
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 577 - 581
  • [43] Multi-latin squares
    Cavenagh, Nicholas
    Haemaelaeinen, Carlo
    Lefevre, James G.
    Stones, Douglas S.
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1164 - 1171
  • [44] ON THE CHROMATIC INDEX OF LATIN SQUARES
    Cavenagh, Nicholas J.
    Kuhl, Jaromy
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 22 - 30
  • [45] On Parity Vectors of Latin Squares
    Donovan, D. M.
    Grannell, M. J.
    Griggs, T. S.
    Lefevre, J. G.
    GRAPHS AND COMBINATORICS, 2010, 26 (05) : 673 - 684
  • [46] Indivisible plexes in latin squares
    Bryant, Darryn
    Egan, Judith
    Maenhaut, Barbara
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 52 (01) : 93 - 105
  • [47] Autoparatopisms of Quasigroups and Latin Squares
    Mendis, Mahamendige Jayama Lalani
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (02) : 51 - 74
  • [48] Permanents and Determinants of Latin Squares
    Donovan, Diane
    Johnson, Kenneth
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (03) : 132 - 148
  • [49] Latin Squares with Restricted Transversals
    Egan, Judith
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (07) : 344 - 361
  • [50] On the number of transversals in latin squares
    Potapov, Vladimir N.
    DISCRETE APPLIED MATHEMATICS, 2016, 202 : 194 - 196