A new visual cryptographic scheme using latin squares

被引:0
作者
Adhikari, A [1 ]
Bose, M [1 ]
机构
[1] Indian Stat Inst, Appl Stat Unit, Kolkata 700035, W Bengal, India
来源
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES | 2004年 / E87A卷 / 05期
关键词
secret sharing scheme; visual secret sharing scheme; visual cryptography; BIBD; latin square;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Combinatorial designs are normally used to construct visual cryptographic schemes. For such schemes two parameters are very important viz. pixel expansion and contrast. Optimizing both is a very hard problem. The schemes having optimal contrast tend to use a high pixel expansion. The focus of the paper is to construct schemes for which pixel expansion is modest and the contrast is close to optimality. Here the tool is latin squares that haven't been used earlier for this purpose.
引用
收藏
页码:1198 / 1202
页数:5
相关论文
共 50 条
  • [31] The Orthogonality Spectrum for Latin Squares of Different Orders
    Peter Dukes
    Jared Howell
    Graphs and Combinatorics, 2013, 29 : 71 - 78
  • [32] The Orthogonality Spectrum for Latin Squares of Different Orders
    Dukes, Peter
    Howell, Jared
    GRAPHS AND COMBINATORICS, 2013, 29 (01) : 71 - 78
  • [33] On the Robustness of Visual Cryptographic Schemes
    Dutta, Sabyasachi
    Roy, Partha Sarathi
    Adhikari, Avishek
    Sakurai, Kouichi
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2016, 2017, 10082 : 251 - 262
  • [34] On Arc-regular permutation groups using Latin squares
    Mansilla, SP
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 21 (01) : 5 - 22
  • [35] On Arc-Regular Permutation Groups Using Latin Squares
    Sònia P. Mansilla
    Journal of Algebraic Combinatorics, 2005, 21 : 5 - 22
  • [36] Information Security using Visual Cryptographic Technique for Resource Constrained Devices
    Singh, Rahul Kumar
    Singh, Brijendra Pratap
    Gore, M. M.
    2017 CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (CICT), 2017,
  • [37] Latin Squares with a Unique Intercalate
    Mendis, Mahamendige Jayama Lalani
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (06) : 279 - 293
  • [38] The recognition of symmetric latin squares
    Ihrig, Edwin C.
    Ihrig, Benjamin M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (04) : 291 - 300
  • [39] Indivisible partitions of latin squares
    Egan, Judith
    Wanless, Ian M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 402 - 417
  • [40] Partial Latin Squares Are Avoidable
    Lars-Daniel Öhman
    Annals of Combinatorics, 2011, 15 : 485 - 497