A new visual cryptographic scheme using latin squares

被引:0
作者
Adhikari, A [1 ]
Bose, M [1 ]
机构
[1] Indian Stat Inst, Appl Stat Unit, Kolkata 700035, W Bengal, India
来源
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES | 2004年 / E87A卷 / 05期
关键词
secret sharing scheme; visual secret sharing scheme; visual cryptography; BIBD; latin square;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Combinatorial designs are normally used to construct visual cryptographic schemes. For such schemes two parameters are very important viz. pixel expansion and contrast. Optimizing both is a very hard problem. The schemes having optimal contrast tend to use a high pixel expansion. The focus of the paper is to construct schemes for which pixel expansion is modest and the contrast is close to optimality. Here the tool is latin squares that haven't been used earlier for this purpose.
引用
收藏
页码:1198 / 1202
页数:5
相关论文
共 50 条
  • [21] Multiple share creation based visual cryptographic scheme using diffusion method with a combination of chaotic maps for multimedia applications
    Geetha, P.
    Jayanthi, V. S.
    Jayanthi, A. N.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (13) : 18503 - 18530
  • [22] Securing Visual Cryptographic Shares using Public Key Encryption
    Kaur, Kulvinder
    Khemchandani, Vineeta
    PROCEEDINGS OF THE 2013 3RD IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2013, : 1108 - 1113
  • [23] Limits of Latin Squares
    Garbe, Frederik
    Hancock, Robert
    Hladky, Jan
    Sharifzadeh, Maryam
    DISCRETE ANALYSIS, 2023, : 1 - 66
  • [24] Quasirandom Latin squares
    Cooper, Jacob W.
    Kral, Daniel
    Lamaison, Ander
    Mohr, Samuel
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (02) : 298 - 308
  • [25] On completing latin squares
    Easton, T
    Parker, RG
    DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) : 167 - 181
  • [26] On the number of Latin squares
    McKay, Brendan D.
    Wanless, Ian M.
    ANNALS OF COMBINATORICS, 2005, 9 (03) : 335 - 344
  • [27] Latin squares with no transversals
    Cavenagh, Nicholas J.
    Wanless, Ian M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02)
  • [28] 25 new r-self-orthogonal Latin squares
    Zhang, Hantao
    DISCRETE MATHEMATICS, 2013, 313 (17) : 1746 - 1753
  • [29] Monogamous latin squares
    Danziger, Peter
    Wanless, Ian M.
    Webb, Bridget S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 796 - 807
  • [30] On the Number of Latin Squares
    Brendan D. McKay
    Ian M. Wanless
    Annals of Combinatorics, 2005, 9 : 335 - 344