Elliptic operators in even subspaces

被引:8
作者
Savin, AY [1 ]
Sternin, BY [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
D O I
10.1070/SM1999v190n08ABEH000423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An elliptic theory is constructed for operators acting in subspaces defined in terms of even pseudodifferential projections. Index formulae are obtained for operators on compact manifolds without boundary and for general boundary-value problems. A connection with Gilkey's theory of eta-invariants is established.
引用
收藏
页码:1195 / 1228
页数:34
相关论文
共 18 条
[1]  
Agranovich M.S., 1963, Uspekhi Mat. Nauk, V19, P53
[2]   HEAT EQUATION AND INDEX THEOREM [J].
ATIYAH, M ;
BOTT, R ;
PATODI, VK .
INVENTIONES MATHEMATICAE, 1973, 19 (04) :279-330
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[4]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[5]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[6]  
Atiyah Michael, 1964, DIFFERENTIAL ANAL BO, P175
[7]   Splitting of the family index [J].
Dai, XZ ;
Zhang, WP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) :303-317
[8]   THE ETA-INVARIANT FOR EVEN DIMENSIONAL PINC MANIFOLDS [J].
GILKEY, PB .
ADVANCES IN MATHEMATICS, 1985, 58 (03) :243-284
[9]  
GILKEY PB, 1989, LECT NOTES MATH, V1410, P202
[10]  
Hormander L., 1985, ANAL LINEAR PARTIAL