Bivariate smoothing;
Generalized cross-validation;
Nonparametric function estimation;
Roughness penalty;
P-splines;
D O I:
10.1007/s00180-013-0448-z
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The penalized spline method has been widely used for estimating univariate smooth functions based on noisy data. This paper studies its extension to the two-dimensional case. To accommodate the need of handling data distributed on irregular regions, we consider bivariate splines defined on triangulations. Penalty functions based on the second-order derivatives are employed to regularize the spline fit and generalized cross-validation is used to select the penalty parameters. A simulation study shows that the penalized bivariate spline method is competitive to some well-established two-dimensional smoothers. The method is also illustrated using a real dataset on Texas temperature.