Interfacial Engineering-Triggered Bifunctionality of CoS2/MoS2 Nanocubes/Nanosheet Arrays for High-Efficiency Overall Water Splitting

被引:69
作者
Zhou, Guangyao [1 ]
Wu, Xiaomei [1 ]
Zhao, Mingming [1 ]
Pang, Huan [4 ]
Xu, Lin [1 ]
Yang, Jun [2 ,3 ]
Tang, Yawen [1 ]
机构
[1] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Nanjing 210023, Peoples R China
[2] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Ctr Mesosci, Inst Proc Engn, Beijing 100190, Peoples R China
[4] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CoS2; MoS2; nanoarrays; electrocatalysis; interfacial engineering; overall water splitting; self-supported electrode; ELECTROCATALYTIC ACTIVITY; NANOSHEET ARRAYS; ALKALINE; METAL;
D O I
10.1002/cssc.202002338
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Searching for high-efficiency nonprecious bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is paramount for the advancement of water electrolysis technologies and the associated renewable energy devices. Modulation of electronic structure of an electrocatalyst via heterointerface engineering represents an efficient strategy to improve its electrocatalytic performance. Herein, a feasible hydrothermal synthesis of a novel heterostructured catalyst was demonstrated, comprising CoS2 nanocubes and vertically aligned MoS2 nanosheet arrays directly grown on flexible and conductive carbon cloth (CC) substrate (denoted as CoS2/MoS2@CC). Thanks to the elaborate interface engineering and vertically aligned nanosheet arrayed architecture, the resultant self-supported CoS2/MoS2@CC electrode possessed enriched exposed active sites, modulated electronic configuration, multidimensional mass transport channels, and outstanding mechanical strength, thereby affording exceptional electrocatalytic performances towards the HER and OER in alkaline electrolyte with overpotentials of 71 and 274 mV at 10 mA cm(-2), respectively. In addition, a two-electrode electrolyzer assembled by CoS2/MoS2@CC required a cell voltage of 1.59 V at 10 mA cm(-2) with nearly 100 % faradaic efficiency and remarkable durability, showing great potential for scalable and economical water electrolysis.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 63 条
[1]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[2]  
[Anonymous], 2017, Angew. Chem
[3]   Facile and one-step synthesis of a free-standing 3D MoS2-rGO/Mo binder-free electrode for efficient hydrogen evolution reaction [J].
Barman, Barun Kumar ;
Das, Debanjan ;
Nanda, Karuna Kar .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (34) :18081-18087
[4]   Boosting Electrocatalytic Water Oxidation by Creating Defects and Lattice-Oxygen Active Sites on Ni-Fe Nanosheets [J].
Chen, Chi ;
Zhang, Peili ;
Wang, Mei ;
Zheng, Dehua ;
Chen, Junchi ;
Li, Fusheng ;
Wu, Xiujuan ;
Fan, Ke ;
Sun, Licheng .
CHEMSUSCHEM, 2020, 13 (18) :5067-5072
[5]   Synergistically Assembled Li2S/FWNTs@Reduced Graphene Oxide Nanobundle Forest for Free-Standing High-Performance Li2S Cathodes [J].
Chen, Yan ;
Lu, Songtao ;
Zhou, Jia ;
Qin, Wei ;
Wu, Xiaohong .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (25)
[6]  
Nguyen DC, 2020, ADV ENERGY MATER, V10, DOI [10.1002/aenm.201903289, 10.3390/agronomy10030413]
[7]   High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting [J].
Feng, Liang-Liang ;
Yu, Guangtao ;
Wu, Yuanyuan ;
Li, Guo-Dong ;
Li, Hui ;
Sun, Yuanhui ;
Asefa, Tewodros ;
Chen, Wei ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14023-14026
[8]   Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production [J].
Gao, Min-Rui ;
Chan, Maria K. Y. ;
Sun, Yugang .
NATURE COMMUNICATIONS, 2015, 6
[9]   Ultrathin MoS2(1-x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction [J].
Gong, Qiufang ;
Cheng, Liang ;
Liu, Changhai ;
Zhang, Mei ;
Feng, Qingliang ;
Ye, Hualin ;
Zeng, Min ;
Xie, Liming ;
Liu, Zhuang ;
Li, Yanguang .
ACS CATALYSIS, 2015, 5 (04) :2213-2219
[10]   Hollow Mo-doped CoP nanoarrays for efficient overall water splitting [J].
Guan, Cao ;
Xiao, Wen ;
Wu, Haijun ;
Liu, Ximeng ;
Zang, Wenjie ;
Zhang, Hong ;
Ding, Jun ;
Feng, Yuan Ping ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2018, 48 :73-80