Crystallization Behaviors and Regime Kinetics Analysis of Poly(L-lactide)-poly(butylene adipate)-poly(L-lactide) Based Multiblock Thermoplastic Polyurethanes

被引:0
|
作者
Zhong, Qian [1 ,2 ]
机构
[1] Tongji Univ, Inst Bio & Nanomat, Dept Mat Sci & Engn, Shanghai 200092, Peoples R China
[2] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
关键词
MULTIPLE MELTING BEHAVIOR; OXIDE) DIBLOCK COPOLYMER; L-LACTIC ACID; POLY(L-LACTIC ACID); POLY(LACTIC ACID); BLOCK-COPOLYMERS; ISOTHERMAL CRYSTALLIZATION; MECHANICAL-PROPERTIES; LAMELLAR MORPHOLOGY; THERMAL-ANALYSIS;
D O I
10.1134/S0965545X18030197
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(L-lactide)-based (PLLA) poly(ester-urethane)s are particularly relevant and gain significant attention due to their environment-friendly degradability and elastomeric shape memory capability. The tensile properties, resilience and degradation are strongly affected by their crystallization. This work was to investigate crystallization behaviors of the poly(L-lactide)-poly(butylene adipate)-poly(L-lactide) (PLLA-PBAPLLA) based thermoplastic polyurethane elastomers (PLAEUs) we synthesized previously. Dynamic scanning calorimetry (DSC) and polarized optical microscopy (POM) in combination with Avrami, Jezioney and Hoffman-Weeks models were used to analyze the impact of the PLLA block length on the crystallization temperature T-c, degree of crystallinity X-c, nucleation and spherulite growth mode and crystallization regime kinetics of the PLAEUs. The results indicate the low melting point poly(butylene adipate) (PBA) block resides in the amorphous domains while the PLLA block resides in both crystalline and amorphous phases. The X-c of the PLAEUs increase with the increased length of the PLLA block (i.e. higher content of PLLA block). The analyses with Avrami and Jezioney models show the PLAEU copolymers follow a disc-like spherulite growth. The covalently bonded PBA block decreases both nucleation velocity and spherulite growth rate in the isothermal crystallization. Such an impact is lessened as PLLA block length increases. The PLLA homopolymers demonstrate crystallization regime transition from II to III at a certain T-c of isothermal crystallization, while the crystallization regime kinetics of PLLA block in the PLAEUs are explained by a single regime III at low molecular weights of PLLA and the transition is restored as the PLLA block length increases (i.e. regime II to III).
引用
收藏
页码:266 / 277
页数:12
相关论文
共 50 条
  • [21] Synthesis of multifunctional poly(D,L-lactide)-poly(oxyethylene)-poly(D,L-lactide) triblock copolymers
    Dimitrov, Ivaylo V.
    Berlinova, Iliyana V.
    Michailova, Victoria I.
    POLYMER JOURNAL, 2013, 45 (04) : 457 - 461
  • [22] Isothermal and Nonisothermal Cold Crystallization Behaviors of Asymmetric Poly(L-lactide)/Poly(D-lactide) Blends
    Li, Yi
    Han, Changyu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (49) : 15927 - 15935
  • [23] Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers
    Yang, Bo
    Wang, Rui
    Ma, Hui-Ling
    Li, Xiaolu
    Brunig, Harald
    Dong, Zhenfeng
    Qi, Yue
    Zhang, Xiuqin
    POLYMERS, 2018, 10 (12):
  • [24] The effect of poly(D-lactide) on the properties of poly(butylene adipate-co-terephthalate)/poly(L-lactide) blends with stereocomplex crystallites formed in situ
    Yu, Mengdie
    Shi, Hechang
    Yu, Yancun
    Cheng, Hongda
    Zhang, Ye
    Han, Changyu
    COLLOID AND POLYMER SCIENCE, 2024, 302 (11) : 1753 - 1764
  • [25] Crystallization and Tensile Behavior of Poly(L-lactide)/Poly(ethylene oxide) Blend
    Xiong Zu-Jiang
    Zhang Xiu-Qin
    Liu Guo-Ming
    Zhao Ying
    Wang Rui
    Wang Du-Jin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2013, 34 (05): : 1288 - 1294
  • [26] Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide)
    Xiang, Sheng
    Jun, Shao
    Li, Gao
    Bian, Xin-chao
    Feng, Li-dong
    Chen, Xue-si
    Liu, Feng-qi
    Huang, Shao-yong
    CHINESE JOURNAL OF POLYMER SCIENCE, 2016, 34 (01) : 69 - 76
  • [27] Crystallization behavior of poly (L-lactide)-poly(ethylene glycol) diblock copolymers
    Wu Tong
    He Yong
    Wei Jia
    Fan Zhong-Yong
    Li Su-Ming
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2006, 27 (11): : 2193 - 2197
  • [28] Crystallization Studies on the Stereocomplexation of Poly(L-lactide)/4-Armed Poly(ε-caprolactone-co-D,L-lactide)- block-poly(D-lactide) Blends
    Jin, Tingting
    Dai, Suyang
    Wang, Xiangyu
    Jiang, Ni
    Ning, Zhenbo
    Gan, Zhihua
    CHEMISTRYSELECT, 2023, 8 (30):
  • [29] Blending Effects on Polymorphic Crystallization of Poly(L-lactide)
    Pan, Pengju
    Liang, Zhichao
    Zhu, Bo
    Dong, Tungalag
    Inoue, Yoshio
    MACROMOLECULES, 2009, 42 (09) : 3374 - 3380
  • [30] Novel Poly(L-lactide)/Poly(D-lactide)/Poly(tetrahydrofuran) Multiblock Copolymers with a Controlled Architecture: Synthesis and Characterization
    Gardella, Lorenza
    Cavallo, Dario
    Colonna, Samuele
    Fina, Alberto
    Monticelli, Orietta
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2014, 52 (22) : 3269 - 3282