Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning

被引:25
作者
Zhang, Wanqiu [1 ,2 ]
Claesen, Marc [2 ]
Moerman, Thomas [2 ]
Groseclose, M. Reid [3 ]
Waelkens, Etienne [4 ]
De Moor, Bart [1 ]
Verbeeck, Nico [2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[2] Aspect Analyt NV, C Mine 12, B-3600 Genk, Belgium
[3] GlaxoSmithKline, Bioimaging, Collegeville, PA 19426 USA
[4] Katholieke Univ Leuven, Dept Cellular & Mol Med, Campus Gasthuisberg O&N1,Herestr 49,Box 901, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Mass spectrometry imaging; Ion image clustering; Deep learning; Unsupervised learning; Representation learning; Spatial pattern recognition; NEURAL-NETWORK; CLASSIFICATION; SEGMENTATION;
D O I
10.1007/s00216-021-03179-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational analysis is crucial to capitalize on the wealth of spatio-molecular information generated by mass spectrometry imaging (MSI) experiments. Currently, the spatial information available in MSI data is often under-utilized, due to the challenges of in-depth spatial pattern extraction. The advent of deep learning has greatly facilitated such complex spatial analysis. In this work, we use a pre-trained neural network to extract high-level features from ion images in MSI data, and test whether this improves downstream data analysis. The resulting neural network interpretation of ion images, coined neural ion images, is used to cluster ion images based on spatial expressions. We evaluate the impact of neural ion images on two ion image clustering pipelines, namely DBSCAN clustering, combined with UMAP-based dimensionality reduction, and k-means clustering. In both pipelines, we compare regular and neural ion images from two different MSI datasets. All tested pipelines could extract underlying spatial patterns, but the neural network-based pipelines provided better assignment of ion images, with more fine-grained clusters, and greater consistency in the spatial structures assigned to individual clusters. Additionally, we introduce the relative isotope ratio metric to quantitatively evaluate clustering quality. The resulting scores show that isotopical m/z values are more often clustered together in the neural network-based pipeline, indicating improved clustering outcomes. The usefulness of neural ion images extends beyond clustering towards a generic framework to incorporate spatial information into any MSI-focused machine learning pipeline, both supervised and unsupervised.
引用
收藏
页码:2803 / 2819
页数:17
相关论文
共 47 条
  • [1] Automatic Registration of Mass Spectrometry Imaging Data Sets to the Allen Brain Atlas
    Abdelmoula, Walid M.
    Carreira, Ricardo J.
    Shyti, Reinald
    Balluff, Benjamin
    van Zeijl, Rene J. M.
    Tolner, Else A.
    Lelieveldt, Boudewijn F. P.
    van den Maagdenberg, Arn M. J. M.
    McDonnell, Liam A.
    Dijkstra, Jouke
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (08) : 3947 - 3954
  • [2] Segmentation of Confocal Raman Microspectroscopic Imaging Data Using Edge-Preserving Denoising and Clustering
    Alexandrov, Theodore
    Lasch, Peter
    [J]. ANALYTICAL CHEMISTRY, 2013, 85 (12) : 5676 - 5683
  • [3] Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
    Alexandrov, Theodore
    Kobarg, Jan Hendrik
    [J]. BIOINFORMATICS, 2011, 27 (13) : I230 - I238
  • [4] Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
  • [5] Deep learning for tumor classification in imaging mass spectrometry
    Behrmann, Jens
    Etmann, Christian
    Boskamp, Tobias
    Casadonte, Rita
    Kriegsmann, Joerg
    Maass, Peter
    [J]. BIOINFORMATICS, 2018, 34 (07) : 1215 - 1223
  • [7] Probabilistic Segmentation of Mass Spectrometry (MS) Images Helps Select Important Ions and Characterize Confidence in the Resulting Segments
    Bemis, Kyle D.
    Harry, April
    Eberlin, Livia S.
    Ferreira, Christina R.
    van de Ven, Stephanie M.
    Mallick, Parag
    Stolowitz, Mark
    Vitek, Olga
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2016, 15 (05) : 1761 - 1772
  • [8] Bengio Y., 2012, P ICML WORKSHOP UNSU, P17, DOI DOI 10.1109/IJCNN.2011.6033302
  • [9] Berkhin Pavel, 2006, Grouping Multidimensional Data: Recent Advances in Clustering, P25, DOI [DOI 10.1007/3-540-28349-8_2, 10.1007/3-540-28349-8_2]
  • [10] Benchmark Analysis of Representative Deep Neural Network Architectures
    Bianco, Simone
    Cadene, Remi
    Celona, Luigi
    Napoletano, Paolo
    [J]. IEEE ACCESS, 2018, 6 : 64270 - 64277