Temperature-dependent asymmetric Prandtl-Ishlinskii hysteresis model for piezoelectric actuators

被引:23
作者
Savoie, Marc [1 ]
Shan, Jinjun [2 ]
机构
[1] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada
[2] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
piezoelectric actuators (PEAs); hysteresis; temperature effects; Prandtl-Ishlinskii model; COMPENSATION; NONLINEARITY;
D O I
10.1088/1361-665X/ac6552
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A temperature-dependent asymmetric Prandtl-Ishlinskii (TAPI) model is developed to describe changes in hysteresis curves with respect to temperature found in the displacement curves vs. input voltage of a piezoelectric actuator (PEA). The proposed modeling scheme considers nonlinearities in an idealized capacitor term in the electromechanical model of the PEA to introduce both asymmetry and temperature dependence in the model. The developed model has the advantage of incorporating asymmetric and thermal effects in a hysteresis-free region of the model which simplifies inversion of the model as well as parameter determination. A parameter identification scheme is described to simplify model identification, even for a large number of thresholds, based on the advantages of the classical Prandtl-Ishlinskii model. The TAPI model is verified experimentally and a compensator is designed to demonstrate that the PEA output is effectively linearized throughout the temperature range.
引用
收藏
页数:15
相关论文
共 40 条
[1]   On hysteresis modeling of a piezoelectric precise positioning system under variable temperature [J].
Al Janaideh, Mohammad ;
Al Saaideh, Mohammad ;
Rakotondrabe, Micky .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145
[2]   A generalized Prandtl-Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators [J].
Al Janaideh, Mohammad ;
Rakheja, Subhash ;
Su, Chun-Yi .
SMART MATERIALS AND STRUCTURES, 2009, 18 (04)
[3]   Temperature dependent ferroelectric and ferroelastic behaviour of PZT wafers [J].
Anand, S. ;
Arockiarajan, A. .
CERAMICS INTERNATIONAL, 2016, 42 (14) :15517-15529
[4]   Modeling and controller design of a 6-DOF precision positioning system [J].
Cai, Kunhai ;
Tian, Yanling ;
Liu, Xianping ;
Fatikow, Sergej ;
Wang, Fujun ;
Cui, Liangyu ;
Zhang, Dawei ;
Shirinzadeh, Bijan .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 :536-555
[5]   A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM [J].
Clayton, Garrett M. ;
Tien, Szuchi ;
Leang, Kam K. ;
Zou, Qingze ;
Devasia, Santosh .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2009, 131 (06) :1-19
[6]   Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation [J].
Dagdeviren, Canan ;
Joe, Pauline ;
Tuzman, Ozlem L. ;
Park, Kwi-Il ;
Lee, Keon Jae ;
Shi, Yan ;
Huang, Yonggang ;
Rogers, John A. .
EXTREME MECHANICS LETTERS, 2016, 9 :269-281
[7]   Thermal contributions to the degradation of Teflon® FEP on the Hubble Space Telescope [J].
de Groh, KK ;
Dever, JA ;
Sutter, JK ;
Gaier, JR ;
Gummow, JD ;
Scheiman, DA ;
He, C .
HIGH PERFORMANCE POLYMERS, 2001, 13 (03) :S401-S420
[8]   A survey of control issues in nanopositioning [J].
Devasia, Santosh ;
Eleftheriou, Evangelos ;
Moheimani, S. O. Reza .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (05) :802-823
[9]  
Fleming AJ, 2014, ADV IND CONTROL, P1, DOI 10.1007/978-3-319-06617-2
[10]   Modeling piezoelectric stack actuators for control of micromanipulation [J].
Goldfarb, M ;
Celanovic, N .
IEEE CONTROL SYSTEMS MAGAZINE, 1997, 17 (03) :69-79