Evolution of the Solid-Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy

被引:175
作者
Huang, William [1 ]
Attia, Peter M. [1 ]
Wang, Hansen [1 ]
Renfrew, Sara E. [2 ,3 ]
Jin, Norman [1 ]
Das, Supratim [5 ]
Zhang, Zewen [1 ]
Boyle, David T. [4 ]
Li, Yuzhang [1 ]
Bazant, Martin Z. [7 ]
McCloskey, Bryan D. [2 ,3 ]
Chueh, William C. [1 ,6 ]
Cui, Yi [1 ,6 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[5] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[6] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[7] MIT, Dept Chem Engn, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
Lithium-ion batteries; transmission electron microscopy; cryogenic electron microscopy; solid-electrolyte interphase; carbon anode; LITHIUM-ION BATTERY; ELECTROCHEMICAL KINETICS; GRAPHITE ANODES; CAPACITY FADE; SEI GROWTH; LI; MECHANISMS; PERFORMANCE; LIQUID; METAL;
D O I
10.1021/acs.nanolett.9b01515
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The stability of modern lithium-ion batteries depends critically on an effective solid-welectrolyte interphase (SEI), a passivation layer that forms on the carbonaceous negative electrode as a result of electrolyte reduction. However, a nanoscopic understanding of how the SEI evolves with battery aging remains limited due to the difficulty in characterizing the structural and chemical properties of this sensitive interphase. In this work, we image the SEI on carbon black negative electrodes using cryogenic transmission electron microscopy (cryo-TEM) and track its evolution during cycling. We find that a thin, primarily amorphous SEI nucleates on the first cycle, which further evolves into one of two distinct SEI morphologies upon further cycling: (1) a compact SEI, with a high concentration of inorganic components that effectively passivates the negative electrode; and (2) an extended SEI spanning hundreds of nanometers. This extended SEI grows on particles that lack a compact SEI and consists primarily of alkyl carbonates. The diversity in observed SEI morphologies suggests that SEI growth is a highly heterogeneous process. The simultaneous emergence of these distinct SEI morphologies highlights the necessity of effective passivation by the SEI, as large-scale extended SEI growths negatively impact lithium-ion transport, contribute to capacity loss, and may accelerate battery failure.
引用
收藏
页码:5140 / 5148
页数:9
相关论文
共 69 条
[1]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[2]  
[Anonymous], 1994, J ELECTROCHEM SOC
[3]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[4]   Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments [J].
Attia, Peter M. ;
Das, Supratim ;
Harris, Stephen J. ;
Bazant, Martin Z. ;
Chueh, William C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) :E97-E106
[5]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[6]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[7]   Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry [J].
Bernhard, Rebecca ;
Metzger, Michael ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :A1984-A1989
[8]   ELASTIC AND CREEP-PROPERTIES OF LI2O [J].
BILLONE, MC ;
LIU, YY ;
POEPPEL, RB ;
ROUTBORT, JL ;
GORETTA, KC ;
KUPPERMAN, DS .
JOURNAL OF NUCLEAR MATERIALS, 1986, 141 :282-288
[9]   Main aging mechanisms in Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Bonhomme, F ;
Blanchard, P ;
Herreyre, S ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :90-96
[10]   Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes [J].
Brown, Zachary L. ;
Jurng, Sunhyung ;
Cao Cuong Nguyen ;
Lucht, Brett L. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3057-3062