seq-ImmuCC: Cell-Centric View of tissue transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-seq data

被引:69
作者
Chen, Ziyi [1 ,2 ,3 ]
Quan, Lijun [1 ,2 ,3 ]
Huang, Anfei [1 ,2 ,3 ]
Zhao, Qiang [3 ,4 ]
Yuan, Yao [3 ,5 ]
Yuan, Xuye [1 ,2 ,3 ]
Shen, Qin [1 ,2 ,3 ]
Shang, Jingzhe [1 ,2 ,3 ]
Ben, Yinyin [1 ,2 ,3 ]
Qin, F. Xiao-Feng [1 ,2 ,3 ]
Wu, Aiping [1 ,2 ,3 ]
机构
[1] Chinese Acad Med Sci, Ctr Syst Med, Inst Basic Med Sci, Beijing, Peoples R China
[2] Peking Union Med Coll, Beijing, Peoples R China
[3] Suzhou Inst Syst Med, Suzhou, Jiangsu, Peoples R China
[4] China Pharmaceut Univ, Sch Life Sci & Technol, Nanjing, Jiangsu, Peoples R China
[5] Xi An Jiao Tong Univ, Hlth Sci Ctr, Sch Pharm, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
mouse; RNA-Seq; immune cell; deconvolution; tumor; machine learning; EXPRESSION PROFILES; CHECKPOINT BLOCKADE; DECONVOLUTION; SAMPLES; INFECTION; GENOTYPE; SUBSETS;
D O I
10.3389/fimmu.2018.01286
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The RNA sequencing approach has been broadly used to provide gene-, pathway-, and network-centric analyses for various cell and tissue samples. However, thus far, rich cellular information carried in tissue samples has not been thoroughly characterized from RNA-Seq data. Therefore, it would expand our horizons to better understand the biological processes of the body by incorporating a cell-centric view of tissue transcriptome. Here, a computational model named seq-ImmuCC was developed to infer the relative proportions of 10 major immune cells in mouse tissues from RNA-Seq data. The performance of seq-ImmuCC was evaluated among multiple computational algorithms, transcriptional platforms, and simulated and experimental datasets. The test results showed its stable performance and superb consistency with experimental observations under different conditions. With seq-ImmuCC, we generated the comprehensive landscape of immune cell compositions in 27 normal mouse tissues and extracted the distinct signatures of immune cell proportion among various tissue types. Furthermore, we quantitatively characterized and compared 18 different types of mouse tumor tissues of distinct cell origins with their immune cell compositions, which provided a comprehensive and informative measurement for the immune microenvironment inside tumor tissues. The online server of seq-ImmuCC are freely available at http://wap-lab.org:3200/immune/.
引用
收藏
页数:11
相关论文
共 25 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits [J].
Aguirre-Gamboa, Raul ;
Joosten, Irma ;
Urbano, Paulo C. M. ;
van der Molen, Renate G. ;
van Rijssen, Esther ;
van Cranenbroek, Bram ;
Oosting, Marije ;
Smeekens, Sanne ;
Jaeger, Martin ;
Zorro, Maria ;
Withoff, Sebo ;
van Herwaarden, Antonius E. ;
Sweep, Fred C. G. J. ;
Netea, Romana T. ;
Swertz, Morris A. ;
Franke, Lude ;
Xavier, Ramnik J. ;
Joosten, Leo A. B. ;
Netea, Mihai G. ;
Wijmenga, Cisca ;
Kumar, Vinod ;
Li, Yang ;
Koenen, Hans J. P. M. .
CELL REPORTS, 2016, 17 (09) :2474-2487
[3]   Digital cell quantification identifies global immune cell dynamics during influenza infection [J].
Altboum, Zeev ;
Steuerman, Yael ;
David, Eyal ;
Barnett-Itzhaki, Zohar ;
Valadarsky, Liran ;
Keren-Shaul, Hadas ;
Meningher, Tal ;
Mendelson, Ella ;
Mandelboim, Michal ;
Gat-Viks, Irit ;
Amit, Ido .
MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (02)
[4]   Genotype to phenotype via network analysis [J].
Carter, Hannah ;
Hofree, Matan ;
Ideker, Trey .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2013, 23 (06) :611-621
[5]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[6]   Inference of immune cell composition on the expression profiles of mouse tissue [J].
Chen, Ziyi ;
Huang, Anfei ;
Sun, Jiya ;
Jiang, Taijiao ;
Qin, F. Xiao-Feng ;
Wu, Aiping .
SCIENTIFIC REPORTS, 2017, 7
[7]   Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells [J].
De Simone, Marco ;
Arrigoni, Alberto ;
Rossetti, Grazisa ;
Gruarin, Paola ;
Ranzani, Valeria ;
Politano, Claudia ;
Bonnal, Raoul J. P. ;
Provasi, Elena ;
Sarnicola, Maria Lucia ;
Panzeri, Ilaria ;
Moro, Monica ;
Crosti, Mariacristina ;
Mazzara, Saveria ;
Vaira, Valentina ;
Bosari, Silvano ;
Palleschi, Alessandro ;
Santambrogio, Luigi ;
Bovo, Giorgio ;
Zucchini, Nicola ;
Totis, Mauro ;
Gianotti, Luca ;
Cesana, Giancarlo ;
Perego, Roberto A. ;
Maroni, Nirvana ;
Ceretti, Andrea Pisani ;
Opocher, Enrico ;
De Francesco, Raffaele ;
Geginat, Jens ;
Stunnenberg, Hendrik G. ;
Abrignani, Sergio ;
Pagani, Massimiliano .
IMMUNITY, 2016, 45 (05) :1135-1147
[8]   DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data [J].
Gong, Ting ;
Szustakowski, Joseph D. .
BIOINFORMATICS, 2013, 29 (08) :1083-1085
[9]   Optimal Deconvolution of Transcriptional Profiling Data Using Quadratic Programming with Application to Complex Clinical Blood Samples [J].
Gong, Ting ;
Hartmann, Nicole ;
Kohane, Isaac S. ;
Brinkmann, Volker ;
Staedtler, Frank ;
Letzkus, Martin ;
Bongiovanni, Sandrine ;
Szustakowski, Joseph D. .
PLOS ONE, 2011, 6 (11)
[10]   Tumor-Infiltrating FoxP3+Tregs and CD8+T Cells Affect the Prognosis of Hepatocellular Carcinoma Patients [J].
Huang, Yong ;
Wang, Feng-mei ;
Wang, Tao ;
Wang, Yi-jun ;
Zhu, Zheng-yan ;
Gao, Ying-tang ;
Du, Zhi .
DIGESTION, 2012, 86 (04) :329-337