seq-ImmuCC: Cell-Centric View of tissue transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-seq data

被引:67
作者
Chen, Ziyi [1 ,2 ,3 ]
Quan, Lijun [1 ,2 ,3 ]
Huang, Anfei [1 ,2 ,3 ]
Zhao, Qiang [3 ,4 ]
Yuan, Yao [3 ,5 ]
Yuan, Xuye [1 ,2 ,3 ]
Shen, Qin [1 ,2 ,3 ]
Shang, Jingzhe [1 ,2 ,3 ]
Ben, Yinyin [1 ,2 ,3 ]
Qin, F. Xiao-Feng [1 ,2 ,3 ]
Wu, Aiping [1 ,2 ,3 ]
机构
[1] Chinese Acad Med Sci, Ctr Syst Med, Inst Basic Med Sci, Beijing, Peoples R China
[2] Peking Union Med Coll, Beijing, Peoples R China
[3] Suzhou Inst Syst Med, Suzhou, Jiangsu, Peoples R China
[4] China Pharmaceut Univ, Sch Life Sci & Technol, Nanjing, Jiangsu, Peoples R China
[5] Xi An Jiao Tong Univ, Hlth Sci Ctr, Sch Pharm, Xian, Shaanxi, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2018年 / 9卷
基金
中国国家自然科学基金;
关键词
mouse; RNA-Seq; immune cell; deconvolution; tumor; machine learning; EXPRESSION PROFILES; CHECKPOINT BLOCKADE; DECONVOLUTION; SAMPLES; INFECTION; GENOTYPE; SUBSETS;
D O I
10.3389/fimmu.2018.01286
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The RNA sequencing approach has been broadly used to provide gene-, pathway-, and network-centric analyses for various cell and tissue samples. However, thus far, rich cellular information carried in tissue samples has not been thoroughly characterized from RNA-Seq data. Therefore, it would expand our horizons to better understand the biological processes of the body by incorporating a cell-centric view of tissue transcriptome. Here, a computational model named seq-ImmuCC was developed to infer the relative proportions of 10 major immune cells in mouse tissues from RNA-Seq data. The performance of seq-ImmuCC was evaluated among multiple computational algorithms, transcriptional platforms, and simulated and experimental datasets. The test results showed its stable performance and superb consistency with experimental observations under different conditions. With seq-ImmuCC, we generated the comprehensive landscape of immune cell compositions in 27 normal mouse tissues and extracted the distinct signatures of immune cell proportion among various tissue types. Furthermore, we quantitatively characterized and compared 18 different types of mouse tumor tissues of distinct cell origins with their immune cell compositions, which provided a comprehensive and informative measurement for the immune microenvironment inside tumor tissues. The online server of seq-ImmuCC are freely available at http://wap-lab.org:3200/immune/.
引用
收藏
页数:11
相关论文
共 25 条
  • [1] Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus
    Abbas, Alexander R.
    Wolslegel, Kristen
    Seshasayee, Dhaya
    Modrusan, Zora
    Clark, Hilary F.
    [J]. PLOS ONE, 2009, 4 (07):
  • [2] Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits
    Aguirre-Gamboa, Raul
    Joosten, Irma
    Urbano, Paulo C. M.
    van der Molen, Renate G.
    van Rijssen, Esther
    van Cranenbroek, Bram
    Oosting, Marije
    Smeekens, Sanne
    Jaeger, Martin
    Zorro, Maria
    Withoff, Sebo
    van Herwaarden, Antonius E.
    Sweep, Fred C. G. J.
    Netea, Romana T.
    Swertz, Morris A.
    Franke, Lude
    Xavier, Ramnik J.
    Joosten, Leo A. B.
    Netea, Mihai G.
    Wijmenga, Cisca
    Kumar, Vinod
    Li, Yang
    Koenen, Hans J. P. M.
    [J]. CELL REPORTS, 2016, 17 (09): : 2474 - 2487
  • [3] Digital cell quantification identifies global immune cell dynamics during influenza infection
    Altboum, Zeev
    Steuerman, Yael
    David, Eyal
    Barnett-Itzhaki, Zohar
    Valadarsky, Liran
    Keren-Shaul, Hadas
    Meningher, Tal
    Mendelson, Ella
    Mandelboim, Michal
    Gat-Viks, Irit
    Amit, Ido
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (02)
  • [4] Genotype to phenotype via network analysis
    Carter, Hannah
    Hofree, Matan
    Ideker, Trey
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2013, 23 (06) : 611 - 621
  • [5] Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade
    Charoentong, Pornpimol
    Finotello, Francesca
    Angelova, Mihaela
    Mayer, Clemens
    Efremova, Mirjana
    Rieder, Dietmar
    Hackl, Hubert
    Trajanoski, Zlatko
    [J]. CELL REPORTS, 2017, 18 (01): : 248 - 262
  • [6] Inference of immune cell composition on the expression profiles of mouse tissue
    Chen, Ziyi
    Huang, Anfei
    Sun, Jiya
    Jiang, Taijiao
    Qin, F. Xiao-Feng
    Wu, Aiping
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells
    De Simone, Marco
    Arrigoni, Alberto
    Rossetti, Grazisa
    Gruarin, Paola
    Ranzani, Valeria
    Politano, Claudia
    Bonnal, Raoul J. P.
    Provasi, Elena
    Sarnicola, Maria Lucia
    Panzeri, Ilaria
    Moro, Monica
    Crosti, Mariacristina
    Mazzara, Saveria
    Vaira, Valentina
    Bosari, Silvano
    Palleschi, Alessandro
    Santambrogio, Luigi
    Bovo, Giorgio
    Zucchini, Nicola
    Totis, Mauro
    Gianotti, Luca
    Cesana, Giancarlo
    Perego, Roberto A.
    Maroni, Nirvana
    Ceretti, Andrea Pisani
    Opocher, Enrico
    De Francesco, Raffaele
    Geginat, Jens
    Stunnenberg, Hendrik G.
    Abrignani, Sergio
    Pagani, Massimiliano
    [J]. IMMUNITY, 2016, 45 (05) : 1135 - 1147
  • [8] DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data
    Gong, Ting
    Szustakowski, Joseph D.
    [J]. BIOINFORMATICS, 2013, 29 (08) : 1083 - 1085
  • [9] Optimal Deconvolution of Transcriptional Profiling Data Using Quadratic Programming with Application to Complex Clinical Blood Samples
    Gong, Ting
    Hartmann, Nicole
    Kohane, Isaac S.
    Brinkmann, Volker
    Staedtler, Frank
    Letzkus, Martin
    Bongiovanni, Sandrine
    Szustakowski, Joseph D.
    [J]. PLOS ONE, 2011, 6 (11):
  • [10] Tumor-Infiltrating FoxP3+Tregs and CD8+T Cells Affect the Prognosis of Hepatocellular Carcinoma Patients
    Huang, Yong
    Wang, Feng-mei
    Wang, Tao
    Wang, Yi-jun
    Zhu, Zheng-yan
    Gao, Ying-tang
    Du, Zhi
    [J]. DIGESTION, 2012, 86 (04) : 329 - 337