On translational clouds for a convex body

被引:3
作者
Talata, I [1 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
关键词
convex body; convex cone; cloud; covering; difference body; translative packing;
D O I
10.1023/A:1005279901749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a d-dimensional convex body K let C(K) denote the minimum size of translational clouds for K. That is, C(K) is the minimum number of mutually non-overlapping translates of K which do not overlap K and block all the light rays emanating from any point of K. In this paper we prove the general upper bound C(K)less than or equal to 6(d2+o(d2)). Furthermore, for an arbitrary centrally symmetric d-dimensional convex body S we show C(S)less than or equal to 3(d2+o(d2)). Finally, for the d- dimensional ball B-d we obtain the bounds 2(0.599d2-o(d2)) less than or equal to C(B-d) less than or equal to 2(1.401d2+o(d2)).
引用
收藏
页码:319 / 329
页数:11
相关论文
共 13 条
[1]  
BOROCZKY L, 1996, STUD SCI MATH HUNG, V32, P93
[2]  
Erdos P., 1962, ACTA ARITH, V7, P281
[3]  
FLORIAN A, 1980, BER MATH STAT SERT F, V143, P1
[4]  
Kabatyanskii G. A., 1978, PROBL PEREDACHI INF, V14, P3
[5]  
Minkowski H., 1904, NACHR GES WISS GOTT, V1904, P311
[6]  
Rogers Claude Ambrose, 1957, ARCH MATH, V8, p220 233
[7]  
Schneider R., 1993, ENCY MATH APPL, V44
[8]   PROBABILITY OF ERROR FOR OPTIMAL CODES IN A GAUSSIAN CHANNEL [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1959, 38 (03) :611-656
[9]  
TOTH GF, 1993, HDB CONVEX GEOMETRY, P799
[10]  
TOTH IF, 1959, PUBL MATH-DEBRECEN, V6, P234