Darboux-Backlund transformations, dressing & impurities in multi-component NLS

被引:10
作者
Adamopoulou, Panagiota [1 ]
Doikou, Anastasia [1 ]
Papamikos, Georgios [2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Reading, Dept Math & Stat, Reading RG6 6AX, Berks, England
关键词
EVOLUTION-EQUATIONS; DEFECTS; INTEGRABILITY; MODEL;
D O I
10.1016/j.nuclphysb.2017.02.016
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the discrete and continuous vector non-linear Schrodinger (NLS) model. We focus on the case where space-like local discontinuities are present, and we are primarily interested in the time evolution on the defect point. This in turn yields the time part of a typical Darboux-Backlund transformation. Within this spirit we then explicitly work out the generic Backlund transformation and the dressing associated to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and integral representation respectively. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:91 / 114
页数:24
相关论文
共 49 条
[31]   EXACT INTEGRATION OF NONLINEAR SCHRODINGER-EQUATION [J].
ITS, AR ;
RYBIN, AV ;
SALL, MA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 74 (01) :20-32
[32]   Darboux transformation and multi-dark soliton for N-component nonlinear Schrodinger equations [J].
Ling, Liming ;
Zhao, Li-Chen ;
Guo, Boling .
NONLINEARITY, 2015, 28 (09) :3243-3261
[33]   Reduction groups and automorphic Lie algebras [J].
Lombardo, S ;
Mikhailov, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) :179-202
[34]  
Matveev V. B., 1991, Darboux Transformations and Solitons
[35]   THE REDUCTION PROBLEM AND THE INVERSE SCATTERING METHOD [J].
MIKHAILOV, AV .
PHYSICA D, 1981, 3 (1-2) :73-117
[36]  
MIKHAILOV AV, 1979, JETP LETT+, V30, P414
[37]  
MIKHAILOV AV, 1980, JETP LETT+, V32, P174
[38]   Darboux transformation and Crum's formula for multi-component integrable equations [J].
Park, QH ;
Shin, HJ .
PHYSICA D, 2001, 157 (1-2) :1-15
[39]  
SEMENOVTYANSHANSKII MA, 1983, FUNCT ANAL APPL+, V17, P259
[40]  
Tsuchida T., ARXIV13086623NLINSI