Darboux-Backlund transformations, dressing & impurities in multi-component NLS

被引:10
作者
Adamopoulou, Panagiota [1 ]
Doikou, Anastasia [1 ]
Papamikos, Georgios [2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Reading, Dept Math & Stat, Reading RG6 6AX, Berks, England
关键词
EVOLUTION-EQUATIONS; DEFECTS; INTEGRABILITY; MODEL;
D O I
10.1016/j.nuclphysb.2017.02.016
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the discrete and continuous vector non-linear Schrodinger (NLS) model. We focus on the case where space-like local discontinuities are present, and we are primarily interested in the time evolution on the defect point. This in turn yields the time part of a typical Darboux-Backlund transformation. Within this spirit we then explicitly work out the generic Backlund transformation and the dressing associated to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and integral representation respectively. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:91 / 114
页数:24
相关论文
共 49 条
[1]  
Ablowitz M J, 2004, LECT NOTES SERIES, V302
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[4]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[5]  
Agrawal G., 2012, Nonlinear Fiber Optics
[6]   Type-II Backlund transformations via gauge transformations [J].
Aguirre, A. R. ;
Araujo, T. R. ;
Gomes, J. F. ;
Zimerman, A. H. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12)
[7]   Inverse scattering approach for massive Thirring models with integrable type-II defects [J].
Aguirre, Alexis Roa .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
[8]  
[Anonymous], 1980, THEORY SOLITONS INVE
[9]  
[Anonymous], [No title captured]
[10]  
[Anonymous], 1974, Sov. Phys. JETP