DEV-DIV- AND DEVSYM-DEVCURL-INEQUALITIES FOR INCOMPATIBLE SQUARE TENSOR FIELDS WITH MIXED BOUNDARY CONDITIONS

被引:28
作者
Bauer, Sebastian [1 ]
Neff, Patrizio [1 ]
Pauly, Dirk [1 ]
Starke, Gerhard [1 ]
机构
[1] Univ Duisburg Essen, Fak Math, Campus Essen,Thea Leymann Str 9, D-45127 Essen, Germany
关键词
Korn's inequality; Lie-algebra decomposition; Poincare's inequality; Maxwell estimates; relaxed micromorphic model; SYSTEM LEAST-SQUARES; FINITE-ELEMENT METHODS; KORNS 1ST INEQUALITY; STOKES; FORMULATION; MAXWELL; MODEL; FLOW;
D O I
10.1051/cocv/2014068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let Omega subset of R-n, n >= 2, be a bounded Lipschitz domain and 1 < q < infinity. We prove the inequality parallel to T parallel to(Lq(Omega)) <= C-DD (parallel to dev T parallel to(Lq(Omega)) + parallel to Div T parallel to(Lq(Omega))) being valid for tensor fields T : Omega --> R-nxn with a normal boundary condition on some open and non- empty part Gamma(nu) of the boundary partial derivative Omega. Here dev T = T - 1/n tr (T) center dot Id denotes the deviatoric part of the tensor T and Div is the divergence row-wise. Furthermore, we prove parallel to T parallel to(L2(Omega)) <= C-DSC (parallel to dev sym T parallel to(L2(Omega)) + parallel to Curl T parallel to(Lq(Omega))) if n >= 3, parallel to T parallel to(L2(Omega)) <= C-DSDC (parallel to dev sym T parallel to(L2(Omega)) + parallel to dev Curl T parallel to(L2(Omega))) if n = 3, being valid for tensor fields T with a tangential boundary condition on some open and non- empty part Gamma(tau) of partial derivative Omega. Here, sym T = 1/2 (T + T-inverted perpendicular) denotes the symmetric part of T and Curl is the rotation row-wise.
引用
收藏
页码:112 / 133
页数:22
相关论文
共 33 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[3]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[4]  
BOFFI D., 2013, MIXED FINITE ELEMENT, V44
[5]   MIXED METHODS FOR STATIONARY NAVIER-STOKES EQUATIONS BASED ON PSEUDOSTRESS-PRESSURE-VELOCITY FORMULATION [J].
Cai, Zhiqiang ;
Zhang, Shun .
MATHEMATICS OF COMPUTATION, 2012, 81 (280) :1903-1927
[6]   Mixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations [J].
Cai, Zhiqiang ;
Tong, Charles ;
Vassilevski, Panayot S. ;
Wang, Chunbo .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) :957-978
[7]   Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems [J].
Cai, ZQ ;
Lee, B ;
Wang, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :843-859
[8]   First-order system least squares for the stress-displacement formulation: Linear elasticity [J].
Cai, ZQ ;
Starke, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) :715-730
[9]   A posteriori error estimates for mixed FEM in elasticity [J].
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 1998, 81 (02) :187-209
[10]   On Korn's Inequality [J].
Ciarlet, Philippe G. .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (05) :607-618