First-principles theoretical analysis of silyl radical diffusion on silicon surfaces

被引:20
作者
Bakos, Tamas [1 ]
Valipa, Mayur S. [1 ]
Maroudas, Dimitrios [1 ]
机构
[1] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2345064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report results from a detailed analysis of the fundamental radical precursor diffusion processes on silicon surfaces and discuss their implications for the surface smoothness of hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of SiH3 radical migration on the hydrogen-terminated Si(001)-(2x1) surface with molecular-dynamics (MD) simulations of SiH3 radical precursor migration on surfaces of a-Si:H films. Our DFT calculations yield activation energies for SiH3 migration that range from 0.18 to 0.89 eV depending on the local electronic environment on the Si(001)-(2x1):H surface. In particular, when no substantial surface relaxation (Si-Si bond breaking or formation) accompanies the hopping of the SiH3 radical the activation barriers are highest, whereas hopping between nearest-neighbor overcoordinated surface Si atoms results in the lowest radical diffusion barrier of 0.18 eV; this low barrier is consistent with the activation barrier for SiH3 migration through overcoordinated sites on the a-Si:H surface. Specifically, the analysis of the MD simulations of SiH3 radical migration on a-Si:H surfaces yields an effective diffusion barrier of 0.16 eV, allowing for the rapid migration of the SiH3 radical prior to its incorporation in surface valleys; rapid migration and subsequent incorporation constitute the two-step mechanism responsible for the smoothness of plasma deposited a-Si:H thin films. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
AYDIL ES, 2001, MAT RES SOC S P, V664
[2]   Thermally activated mechanisms of hydrogen abstraction by growth precursors during plasma deposition of silicon thin films [J].
Bakos, T ;
Valipa, MS ;
Maroudas, D .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (05)
[3]   Temperature dependence of precursor-surface interactions in plasma deposition of silicon thin films [J].
Bakos, T ;
Valipa, M ;
Aydil, ES ;
Maroudas, D .
CHEMICAL PHYSICS LETTERS, 2005, 414 (1-3) :61-65
[4]   Recent developments in amorphous silicon-based solar cells [J].
Beneking, C ;
Rech, B ;
Folsch, J ;
Wagner, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1996, 194 (01) :41-53
[5]   Surface transport kinetics in low-temperature silicon deposition determined from topography evolution [J].
Bray, KR ;
Parsons, GN .
PHYSICAL REVIEW B, 2002, 65 (03) :1-8
[6]   Surface diffusion of SiH3 radicals and growth mechanism of a-Si:H and microcrystalline Si [J].
Dewarrat, R ;
Robertson, J .
THIN SOLID FILMS, 2003, 427 (1-2) :11-15
[7]   SURFACE-REACTION PROBABILITY OF FILM-PRODUCING RADICALS IN SILANE GLOW-DISCHARGES [J].
DOUGHTY, DA ;
DOYLE, JR ;
LIN, GH ;
GALLAGHER, A .
JOURNAL OF APPLIED PHYSICS, 1990, 67 (10) :6220-6228
[8]   Growth mechanism of hydrogenated amorphous silicon studied by in situ scanning tunneling microscopy [J].
Flewitt, AJ ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (12) :8032-8039
[9]   NEUTRAL RADICAL DEPOSITION FROM SILANE DISCHARGES [J].
GALLAGHER, A .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (07) :2406-2413
[10]   MONTE-CARLO SIMULATIONS OF AMORPHOUS HYDROGENATED SILICON THIN-FILM GROWTH [J].
GLEASON, KK ;
WANG, KS ;
CHEN, MK ;
REIMER, JA .
JOURNAL OF APPLIED PHYSICS, 1987, 61 (08) :2866-2873