First-principles theoretical analysis of silyl radical diffusion on silicon surfaces

被引:20
|
作者
Bakos, Tamas [1 ]
Valipa, Mayur S. [1 ]
Maroudas, Dimitrios [1 ]
机构
[1] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 125卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2345064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report results from a detailed analysis of the fundamental radical precursor diffusion processes on silicon surfaces and discuss their implications for the surface smoothness of hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of SiH3 radical migration on the hydrogen-terminated Si(001)-(2x1) surface with molecular-dynamics (MD) simulations of SiH3 radical precursor migration on surfaces of a-Si:H films. Our DFT calculations yield activation energies for SiH3 migration that range from 0.18 to 0.89 eV depending on the local electronic environment on the Si(001)-(2x1):H surface. In particular, when no substantial surface relaxation (Si-Si bond breaking or formation) accompanies the hopping of the SiH3 radical the activation barriers are highest, whereas hopping between nearest-neighbor overcoordinated surface Si atoms results in the lowest radical diffusion barrier of 0.18 eV; this low barrier is consistent with the activation barrier for SiH3 migration through overcoordinated sites on the a-Si:H surface. Specifically, the analysis of the MD simulations of SiH3 radical migration on a-Si:H surfaces yields an effective diffusion barrier of 0.16 eV, allowing for the rapid migration of the SiH3 radical prior to its incorporation in surface valleys; rapid migration and subsequent incorporation constitute the two-step mechanism responsible for the smoothness of plasma deposited a-Si:H thin films. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] First-principles theoretical analysis of dopant adsorption and diffusion on surfaces of ZnSe nanocrystals
    Singh, Tejinder
    Mountziaris, T. J.
    Maroudas, Dimitrios
    CHEMICAL PHYSICS LETTERS, 2008, 462 (4-6) : 265 - 268
  • [2] First-principles theoretical analysis of sequential hydride dissociation on surfaces of silicon thin films
    Singh, Tejinder
    Valipa, Mayur S.
    Mountziaris, T. J.
    Maroudas, Dimitrios
    APPLIED PHYSICS LETTERS, 2007, 90 (25)
  • [3] First-principles study of boron diffusion in silicon
    Windl, W
    Bunea, MM
    Stumpf, R
    Dunham, ST
    Masquelier, MP
    PHYSICAL REVIEW LETTERS, 1999, 83 (21) : 4345 - 4348
  • [4] First-principles study of silicon nanowires with different surfaces
    Gao, Mingzhi
    You, Siyu
    Wang, Yan
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (04) : 3303 - 3309
  • [5] First-principles study of silicon nanowires with different surfaces
    Gao, Mingzhi
    You, Siyu
    Wang, Yan
    Japanese Journal of Applied Physics, 2008, 47 (4 PART 2): : 3303 - 3309
  • [6] First-principles investigation of indium diffusion in a silicon substrate
    Yoon, KS
    Hwang, CO
    Yoo, JH
    Won, T
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (04) : 535 - 539
  • [7] Generalized stacking fault energy surfaces and dislocation properties of silicon: A first-principles theoretical study
    Juan, YM
    Kaxiras, E
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 74 (06): : 1367 - 1384
  • [8] Generalized stacking fault energy surfaces and dislocation properties of silicon: a first-principles theoretical study
    Juan, Y.-M.
    Kaxiras, E.
    Philosophical Magazine A: Physics of Condensed Matter, Defects and Mechanical Properties, 74 (06):
  • [9] First-principles analysis of properties of Cu surfaces
    Shu Yu
    Zhang Yan
    Zhang Jian-Min
    ACTA PHYSICA SINICA, 2012, 61 (01)
  • [10] First-principles investigation of functionalization-defects on silicon surfaces
    Cucinotta, C. S.
    Bonferroni, B.
    Ferretti, A.
    Ruini, A.
    Caldas, M. J.
    Molinari, E.
    SURFACE SCIENCE, 2006, 600 (18) : 3892 - 3897