An in situ operando MEMS platform for characterization of Li-ion battery electrodes

被引:3
|
作者
Jung, H. [1 ,2 ]
Gerasopoulos, K. [2 ]
Zhang, X. [1 ]
Ghodssi, R. [1 ,2 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
来源
15TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2015) | 2015年 / 660卷
关键词
D O I
10.1088/1742-6596/660/1/012065
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an in situ operando approach that allows characterization of lithium-ion battery electrodes. A MEMS sensor is designed and integrated with a commercially available Raman spectroscope to enable monitoring the stress and structural changes in the electrodes. An interferometric method with an enhanced image processing algorithm is applied for analyzing the crystal phase-dependent stress changes - contributing to higher sensitivity compared to a previously reported technique - while the structural changes are monitored using Raman spectroscopy. New capabilities of our platform are highlighted, allowing visual observation of crystal phase-dependent structural changes in the electrode. Simultaneous characterization of the stress and structural changes are achieved concurrently in situ operando. The results show excellent agreement with previous literature reports on both phenomena.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] In situ quantification of interphasial chemistry in Li-ion battery
    Liu, Tongchao
    Lin, Lingpiao
    Bi, Xuanxuan
    Tian, Leilei
    Yang, Kai
    Liu, Jiajie
    Li, Maofan
    Chen, Zonghai
    Lu, Jun
    Amine, Khalil
    Xu, Kang
    Pan, Feng
    NATURE NANOTECHNOLOGY, 2019, 14 (01) : 50 - +
  • [22] In situ quantification of interphasial chemistry in Li-ion battery
    Tongchao Liu
    Lingpiao Lin
    Xuanxuan Bi
    Leilei Tian
    Kai Yang
    Jiajie Liu
    Maofan Li
    Zonghai Chen
    Jun Lu
    Khalil Amine
    Kang Xu
    Feng Pan
    Nature Nanotechnology, 2019, 14 : 50 - 56
  • [23] A New Technique for In Situ Determination of the Active Surface Area Changes of Li-Ion Battery Electrodes
    Ratynski, Maciej
    Hamankiewicz, Bartosz
    Buchberger, Dominika A.
    Boczar, Maciej
    Krajewski, Michal
    Czerwinski, Andrzej
    BATTERIES & SUPERCAPS, 2020, 3 (10) : 1028 - 1039
  • [24] Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry Via Scanning Ion Conductance Microscopy
    Lipson, Albert L.
    Ginder, Ryan S.
    Hersam, Mark C.
    ADVANCED MATERIALS, 2011, 23 (47) : 5613 - +
  • [25] A Cylindrical Cell for Operando Neutron Diffraction of Li-Ion Battery Electrode Materials
    Vitoux, Laura
    Reichardt, Martin
    Sallard, Sebastien
    Novak, Petr
    Sheptyakov, Denis
    Villevieille, Claire
    FRONTIERS IN ENERGY RESEARCH, 2018, 6
  • [26] Tale of spinels: From Li-Ion to Mg battery electrodes
    Cabana, Jordi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [27] Engineering hierarchical pore network for Li-ion battery electrodes
    Wang Y.
    Zhang Y.
    Tong W.
    Ye G.
    Zhou X.
    Yuan W.
    Huagong Xuebao/CIESC Journal, 2021, 72 (12): : 6340 - 6350
  • [28] Improving the electrochemical performance of organic Li-ion battery electrodes
    Renault, Steven
    Brandell, Daniel
    Gustafsson, Torbjorn
    Edstrom, Kristina
    CHEMICAL COMMUNICATIONS, 2013, 49 (19) : 1945 - 1947
  • [29] Chemically stable artificial SEI for Li-ion battery electrodes
    Zhang, Qinglin
    Lei, Han
    Pan, Jie
    Zhi, Chen
    Cheng, Yang-Tse
    APPLIED PHYSICS LETTERS, 2017, 110 (13)
  • [30] Deterministic Design of Chemistry and Mesostructure in Li-Ion Battery Electrodes
    Braun, Paul, V
    Cook, John B.
    ACS NANO, 2018, 12 (04) : 3060 - 3064