Modeling of dual-metal Schottky contacts based silicon micro and nano wire solar cells

被引:4
作者
Rabbani, M. Golam [1 ]
Verma, Amit [2 ]
Adachi, Michael M. [3 ]
Sundararajan, Jency P. [1 ]
Khader, Mahmoud M. [4 ]
Nekovei, Reza
Anantram, M. P. [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[2] Texas A&M Univ, Dept Elect Engn & Comp Sci, Kingsville, TX 78363 USA
[3] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[4] Qatar Univ, Coll Engn, Gas Proc Ctr, Doha, Qatar
基金
美国国家科学基金会;
关键词
Silicon nanowire; Schottky contact; Work function; Lifetime; Diffusion length; Interdigitated solar cell; MINORITY-CARRIER LIFETIMES; SURFACE PASSIVATION; RECOMBINATION; ABSORPTION; ENHANCEMENT; TRANSISTORS; EFFICIENCY; NANOWIRES; PLATINUM; DEVICES;
D O I
10.1016/j.solmat.2014.07.015
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We study solar cell properties of single silicon wires connected at their ends to two dissimilar metals of different work functions. Effects of wire dimensions, the work functions of the metals, and minority carrier lifetimes on short circuit current as well as open circuit voltage are studied. The most efficient photovoltaic behavior is found to occur when one metal makes a Schottky contact with the wire, and the other makes an Ohmic contact. As wire length increases, both short circuit current and open circuit voltage increase before saturation occurs. Depending on the work function difference between the metals and the wire dimensions, the saturation length increases by approximately an order of magnitude with a two order magnitude increase in minority carrier length. However current per surface area exposed to light is found to decrease rapidly with increase in length. The use of a multi-contact interdigitated design for long wires is investigated to increase the photovoltaic response of the devices. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 40 条
[11]   MODELING OF MINORITY-CARRIER TRANSPORT IN HEAVILY DOPED SILICON EMITTERS [J].
DELALAMO, JA ;
SWANSON, RM .
SOLID-STATE ELECTRONICS, 1987, 30 (11) :1127-1136
[12]  
France C., 2014, The Reactivity Series of Metals
[13]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[14]   Analysis of optical absorption in silicon nanowire Arrays for photovoltaic applications [J].
Hu, Lu ;
Chen, Gang .
NANO LETTERS, 2007, 7 (11) :3249-3252
[15]   Shallow junction doping technologies for ULSI [J].
Jones, EC ;
Ishida, E .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1998, 24 (1-2) :1-80
[16]   Minority Carrier Lifetimes and Surface Effects in VLS-Grown Axial p-n Junction Silicon Nanowires [J].
Jung, Yeonwoong ;
Vacic, Aleksandar ;
Perea, Daniel E. ;
Picraux, Samuel T. ;
Reed, Mark A. .
ADVANCED MATERIALS, 2011, 23 (37) :4306-4311
[17]   Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition [J].
Kato, Shinya ;
Kurokawa, Yasuyoshi ;
Miyajima, Shinsuke ;
Watanabe, Yuya ;
Yamada, Akira ;
Ohta, Yoshimi ;
Niwa, Yusuke ;
Hirota, Masaki .
NANOSCALE RESEARCH LETTERS, 2013, 8 :1-8
[18]  
Kelzenberg M D, 2008, 2008 33 IEEE PHOTOVO, P1
[19]   Photovoltaic measurements in single-nanowire silicon solar cells [J].
Kelzenberg, Michael D. ;
Turner-Evans, Daniel B. ;
Kayes, Brendan M. ;
Filler, Michael A. ;
Putnam, Morgan C. ;
Lewis, Nathan S. ;
Atwater, Harry A. .
NANO LETTERS, 2008, 8 (02) :710-714
[20]   Multiple silicon nanowires-embedded Schottky solar cell [J].
Kim, Joondong ;
Yun, Ju-Hyung ;
Han, Chang-Soo ;
Cho, Yong Jae ;
Park, Jeunghee ;
Park, Yun Chang .
APPLIED PHYSICS LETTERS, 2009, 95 (14)