Non-radial ground states for the Henon equation

被引:218
作者
Smets, D
Willem, M
Su, JB
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[2] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
symmetry breaking; Henon's equation;
D O I
10.1142/S0219199702000725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse symmetry breaking for ground states of the Henon equation [7] in a ball. Asymptotic estimates of the transition are also given when p is close to either 2 or 2*.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 12 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]  
Brezis H., 1999, Differential equations: La Pietra 1996 (Florence), V65, P1
[3]   Algorithms and visualization for solutions of nonlinear elliptic equations [J].
Chen, G ;
Zhou, JX ;
Ni, WM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (07) :1565-1612
[4]   A NON-LINEAR BOUNDARY-VALUE PROBLEM WITH MANY POSITIVE SOLUTIONS [J].
COFFMAN, CV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (03) :429-437
[5]   ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION [J].
DING, WY ;
NI, WM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 91 (04) :283-308
[6]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[7]  
HENON M, 1973, ASTRON ASTROPHYS, V24, P229
[8]  
HOCHSTADT H, 1973, FONCTIONS PHYSIQUE M
[9]   Symmetry results for functions yielding best constants in Sobolev-type inequalities [J].
Kawohl, B .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) :683-690
[10]  
Kawohl B., 1985, LECT NOTES MATH, V1150