Modular optimization of multi-gene pathways for fumarate production

被引:45
作者
Chen, Xiulai [1 ,2 ,3 ]
Zhu, Pan [1 ,2 ,3 ]
Liu, Liming [1 ,2 ,3 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Lab Food Microbial Mfg Engn, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Fumarate; Modular pathway engineering; Multi-gene pathway; Synthetic biology; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ACID PRODUCTION; BIOSYNTHETIC PATHWAYS; TORULOPSIS-GLABRATA; RHIZOPUS-ORYZAE; GROWTH; IDENTIFICATION; TRANSPORTER; EXPRESSION;
D O I
10.1016/j.ymben.2015.07.007
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titer improvements in a multigene fumarate metabolic pathway. On the basis of central pathway architecture, yeast fumarate biosynthesis was re-cast into three modules: reduction module, oxidation module, and byproduct module. We targeted reduction module and oxidation module to the cytoplasm and the mitochondria, respectively. Combinatorially tuning pathway efficiency by constructing protein fusions RoMDH-P160A and KGD2-SUCLG2 and optimizing metabolic balance by controlling genes RoPYC, RoMDH-P160A, KGD2SUCLG2 and SDH1 expression strengths led to significantly improved fumarate production (20.46 g/L). In byproduct module, synthetizing DNA-guided scaffolds and designing sRNA switchs enabled further production improvement up to 33.13 g/L. These results suggest that modular pathway engineering can systematically optimize biosynthesis pathways to enable an efficient production of fumarate. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 48 条
[41]   Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes [J].
Xu, Guoqiang ;
Chen, Xiulai ;
Liu, Liming ;
Jiang, Linghuo .
BIORESOURCE TECHNOLOGY, 2013, 148 :91-96
[42]   Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering [J].
Xu, Guoqiang ;
Zou, Wei ;
Chen, Xiulai ;
Xu, Nan ;
Liu, Liming ;
Chen, Jian .
PLOS ONE, 2012, 7 (12)
[43]   Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae [J].
Xu, Guoqiang ;
Liu, Liming ;
Chen, Jian .
MICROBIAL CELL FACTORIES, 2012, 11
[44]   Modular optimization of multi-gene pathways for fatty acids production in E. coli [J].
Xu, Peng ;
Gu, Qin ;
Wang, Wenya ;
Wong, Lynn ;
Bower, Adam G. W. ;
Collins, Cynthia H. ;
Koffas, Mattheos A. G. .
NATURE COMMUNICATIONS, 2013, 4
[45]   Key technologies for the industrial production of fumaric acid by fermentation [J].
Xu, Qing ;
Li, Shuang ;
Huang, He ;
Wen, Jianping .
BIOTECHNOLOGY ADVANCES, 2012, 30 (06) :1685-1696
[46]   Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose [J].
Zhang, Baohua ;
Skory, Christopher D. ;
Yang, Shang-Tian .
METABOLIC ENGINEERING, 2012, 14 (05) :512-520
[47]   Engineering central metabolic modules of Escherichia coli for improving β-carotene production [J].
Zhao, Jing ;
Li, Qingyan ;
Sun, Tao ;
Zhu, Xinna ;
Xu, Hongtao ;
Tang, Jinlei ;
Zhang, Xueli ;
Ma, Yanhe .
METABOLIC ENGINEERING, 2013, 17 :42-50
[48]   Modular Pathway Engineering of Diterpenoid Synthases and the Mevalonic Acid Pathway for Miltiradiene Production [J].
Zhou, Yongjin J. ;
Gao, Wei ;
Rong, Qixian ;
Jin, Guojie ;
Chu, Huiying ;
Liu, Wujun ;
Yang, Wei ;
Zhu, Zhiwei ;
Li, Guohui ;
Zhu, Guofeng ;
Huang, Luqi ;
Zhao, Zongbao K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :3234-3241