Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition

被引:66
作者
Damour, Cedric [1 ]
Benne, Michel [1 ]
Grondin-Perez, Brigitte [1 ]
Bessafi, Miloud [1 ]
Hissel, Daniel [2 ]
Chabriat, Jean-Pierre [1 ]
机构
[1] Univ La Reunion, EA 4079, LE2P, F-97715 St Denis, France
[2] Univ Franche Comte, CNRS, UMR 6174, FCLAB Res Federat,FR CNRS 3539,FEMTO ST Energy De, F-90010 Belfort, France
关键词
PEM fuel cell; Non-invasive fault diagnosis; Flooding; Drying; Empirical mode decomposition; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; WATER MANAGEMENT; SYSTEMS; IMPLEMENTATION; METHODOLOGIES; STRATEGY; STACKS; PEMFCS; SIGNAL;
D O I
10.1016/j.jpowsour.2015.09.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diagnosis tool for water management is relevant to improve the reliability and lifetime of polymer electrolyte membrane fuel cells (PEMFCs). This paper presents a novel signal-based diagnosis approach, based on Empirical Mode Decomposition (EMD), dedicated to PEMFCs. EMD is an empirical, intuitive, direct and adaptive signal processing method, without pre-determined basis functions. The proposed diagnosis approach relies on the decomposition of FC output voltage to detect and isolate flooding and drying faults. The low computational cost of EMD, the reduced number of required measurements, and the high diagnosis accuracy of flooding and drying faults diagnosis make this approach a promising online diagnosis tool for PEMFC degraded modes management. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:596 / 603
页数:8
相关论文
共 28 条
[1]   Diagnostic tools for PEMFCs: from conception to implementation [J].
Cadet, C. ;
Jemei, S. ;
Druart, F. ;
Hissel, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) :10613-10626
[2]   Real-time implementation of a neural model-based self-tuning PID strategy for oxygen stoichiometry control in PEM fuel cell [J].
Damour, C. ;
Benne, M. ;
Lebreton, C. ;
Deseure, J. ;
Grondin-Perez, B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (24) :12819-12825
[3]   Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal [J].
Dybala, Jacek ;
Zimroz, Radoslaw .
APPLIED ACOUSTICS, 2014, 77 :195-203
[4]   Model-based fault diagnosis in PEM fuel cell systems [J].
Escobet, T. ;
Feroldi, D. ;
de Lira, S. ;
Puig, V. ;
Quevedo, J. ;
Riera, J. ;
Serra, M. .
JOURNAL OF POWER SOURCES, 2009, 192 (01) :216-223
[5]   A Data-Driven Noise Reduction Method and Its Application for the Enhancement of Stress Wave Signals [J].
Feng, Hai-Lin ;
Fang, Yi-Ming ;
Xiang, Xuan-Qi ;
Li, Jian ;
Li, Guan-Hui .
SCIENTIFIC WORLD JOURNAL, 2012,
[6]   Model based PEM fuel cell state-of-health monitoring via ac impedance measurements [J].
Fouquet, N. ;
Doulet, C. ;
Nouillant, C. ;
Dauphin-Tanguy, G. ;
Ould-Bouamama, B. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :905-913
[7]   Signal Processing and Stochastic Filtering for EIS Based PHM of Fuel Cell Systems [J].
Gasperin, M. ;
Boskoski, P. ;
Debenjak, A. ;
Petrovcic, J. .
FUEL CELLS, 2014, 14 (03) :457-465
[8]  
Hassan H, 2005, 75 ANN SOC EXPL GEOP, P704, DOI DOI 10.1190/1.2144422
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   Intrinsic mode functions and a strategy for forecasting Indian monsoon rainfall [J].
Iyengar, RN ;
Kanth, STGR .
METEOROLOGY AND ATMOSPHERIC PHYSICS, 2005, 90 (1-2) :17-36