The structure, capability and the Schur multiplier of generalized Heisenberg Lie algebras

被引:11
作者
Niroomand, Peyman [1 ]
Johari, Farangis [2 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Iran
关键词
Schur multiplier; Nilpotent Lie algebra; Capability; Generalized Heisenberg;
D O I
10.1016/j.jalgebra.2018.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From Berkovich and Janko [3, Problem 1729] asked to obtain the Schur multiplier and the representation of a group G, when G is a special p-group minimally generated by d elements and vertical bar G'vertical bar = p(1/2 d(d-1)). Here, we intend to give an answer to this question similarly for nilpotent Lie algebras. Furthermore, we give some results about the tensor square and the Schur multiplier of some nilpotent Lie algebras of class two. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:482 / 489
页数:8
相关论文
共 20 条
[1]   On characterizing nilpotent Lie algebras by their multipliers [J].
Batten, P ;
Moneyhun, K ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4319-4330
[2]  
Batten P., 1993, THESIS
[3]  
Berkovich Y., 2011, GROUPS PRIME POWER O, V3
[4]   ON THE ORDER OF THE COMMUTATOR SUBGROUP AND THE SCHUR MULTIPLIER OF A FINITE P-GROUP [J].
BERKOVICH, YG .
JOURNAL OF ALGEBRA, 1991, 144 (02) :269-272
[5]   On the Schur multiplier of p-groups [J].
Ellis, G .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4173-4177
[6]   A bound on the schur multiplier of a prime-power group [J].
Ellis, G ;
Wiegold, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) :191-196
[7]   A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS [J].
ELLIS, GJ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :101-120
[8]  
Hall M., 1956, THEORY GROUPS
[9]   On characterizing nilpotent lie algebras by their multipliers, t(L) = 3,4,5,6 [J].
Hardy, P ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3527-3539
[10]   Capability and Schur multiplier of a pair of Lie algebras [J].
Johari, Farangis ;
Parvizi, Mohsen ;
Niroomand, Peyman .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 :184-196