ENHANCEMENT OF MARINE CORROSION AND TRIBOCORROSION RESISTANCE OF OFFSHORE MOORING CHAIN STEEL BY ALUMINIZING PROCESS

被引:7
作者
Alkan, Sabri [1 ]
机构
[1] Bandirma Onyedi Eylul Univ, Maritime Vocat Sch Higher Educ, Bandirma, Turkey
来源
BRODOGRADNJA | 2022年 / 73卷 / 04期
关键词
Offshore; mooring chain; aluminization; corrosive wear; seawater; WEAR BEHAVIOR; TEMPERATURE; ALLOY; COATINGS; MICROSTRUCTURE;
D O I
10.21278/brod73407
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The safety of mooring systems and accessories is one of the most critical issues in the structural integrity of floating oil/gas and renewable offshore structures. Mooring chains and accessories operate under dynamic conditions in harsh marine environments. They are subject to severe wear and corrosion between their links due to relative movement from waves, wind, and ocean currents that disrupt structural integrity. To cope with this problem, the pack -aluminizing process was applied on the R4 grade offshore mooring chain steel for 2 h at 850 degrees C to improve corrosion and wear-corrosion (tribocorrosion) resistance in 3.5% NaCl. The tribocorrosion behaviour of untreated and aluminized samples was investigated by a tribo-electrochemical setup that simultaneously allows for collecting the wear and corrosion data. Potentiodynamic and potentiostatic corrosion and tribocorrosion tests were carried out to understand corrosion kinetics. Optical, SEM, XRD and EDS analyses were performed to characterize the aluminide layer and surface morphologies before and after tribocorrosion investigations. In polarization scans under corrosion and tribocorrosion conditions, the current showed a significant activation stretch of several orders of magnitude, with minor potential changes in the anodic region. Due to the galvanic effects of sliding under natural electrochemical conditions, the untreated R4 alloy exhibited cathodic properties in the wear track, while the aluminium coating was out of the wear track due to its oxide-forming ability. At the cathodic potential, two hard Al2O3 materials under pure mechanical effects and third bodies emerging from cracks on the coating surface increase the friction coefficient (COF), while the oxide product film, which has a lubricating ability and pits which reduces the contact area, caused a decrease in COF at the high anodic potential. The study revealed that while the aluminide layer improved the corrosion and tribological character of R4 alloy, material loss from wear track increased due to micro fractures and cracks in the coating layer during sliding tribocorrosion conditions.
引用
收藏
页码:131 / 159
页数:29
相关论文
共 80 条
[61]   SELECTION OF WELDING CONDITIONS FOR MINIMIZING THE RESIDUAL STRESSES AND DEFORMATIONS DURING HARD-FACING OF MILD STEEL [J].
Savas, Atilla .
BRODOGRADNJA, 2021, 72 (01) :1-18
[62]   A STUDY OF COMPOSITE COATINGS ON 22MnCrNiMo STEEL FOR MOORING CHAIN [J].
Shen, Yan ;
Sahoo, Prasanta K. ;
Pan, Yipeng .
SURFACE REVIEW AND LETTERS, 2018, 25 (03)
[63]   Evaluation of the Corrosion Protection of Two Underwater Coating Systems in a Simulated Marine Environment [J].
Stojanovic, Ivan ;
Farkas, Andrea ;
Alar, Vesna ;
Degiuli, Nastia .
JOM, 2019, 71 (12) :4330-4338
[64]   Formation and phase transformation of aluminide coating prepared by low-temperature aluminizing process [J].
Sun, Yanhui ;
Dong, Jian ;
Zhao, Pengze ;
Dou, Bingsheng .
SURFACE & COATINGS TECHNOLOGY, 2017, 330 :234-240
[65]   Development of interlink wear estimation method for mooring chain of floating structures: Validation and new approach using three-dimensional contact response [J].
Takeuchi, Takaaki ;
Utsunomiya, Tomoaki ;
Gotoh, Koji ;
Sato, Iku .
MARINE STRUCTURES, 2021, 77
[66]  
Tezdogan T, 2014, BRODOGRADNJA, V65, P49
[67]   A REVIEW OF SHIP MOORING SYSTEMS [J].
Villa-Caro, R. ;
Carral, J. C. ;
Fraguela, J. A. ;
Lopez, M. ;
Carral, L. .
BRODOGRADNJA, 2018, 69 (01) :123-149
[68]   A multi-degradation test rig for studying the synergy effects of tribocorrosion interacting with 4-point static and cyclic bending [J].
von der Ohe, C. B. ;
Johnsen, R. ;
Espallargas, N. .
WEAR, 2011, 271 (11-12) :2978-2990
[69]   Fluoride effect on plasma electrolytic oxidation coating formed on Mg-Al alloy in alkaline electrolytes [J].
Wang, Lishi ;
Feng, Tao ;
Yu, Shanwen ;
Cheng, Yihang ;
Bu, Zhixiang ;
Hu, Xinbin .
MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
[70]  
Wong H., 1995, Trans. Jpn. Soc. Mech. Eng. Ser. C, V61, P4027, DOI [10.1299/kikaic.61.4027, DOI 10.1299/KIKAIC.61.4027]