Ultimate efficiency of experimental designs for Ornstein-Uhlenbeck type processes

被引:0
作者
Lacko, Vladimir [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Appl Math & Stat, Bratislava 84248, Slovakia
关键词
Ito stochastic differential equation; Exact design; Product covariance structure; Asymptotic Fisher information matrix; Efficiency; Gompertz model; MAXIMUM-LIKELIHOOD-ESTIMATION; REGRESSION PROBLEMS; EQUIDISTANT; GROWTH; MODEL;
D O I
10.1016/j.jspi.2014.02.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For processes governed by linear Ito stochastic differential equations of the form dX(t)=[a(t)+b(t)X(t)] dt+sigma(t) dW(t), we discuss the existence of optimal sampling designs with strictly increasing sampling times. We derive an asymptotic Fisher information matrix, which we take as a reference in assessing the quality of the finite-point sampling designs. The results are extended to a broader class of Ito stochastic differential equations. We give an example based on the Gompertz tumour growth law. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [41] Efficient control protocols for an active Ornstein-Uhlenbeck particle
    Gupta, Deepak
    Klapp, Sabine H. L.
    Sivak, David A.
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [42] ORNSTEIN-UHLENBECK PROCESS WITH NON-GAUSSIAN STRUCTURE
    Obuchowski, Jakub
    Wylomanska, Agnieszka
    ACTA PHYSICA POLONICA B, 2013, 44 (05): : 1123 - 1136
  • [43] AN ANALYTICAL APPROACH FOR VARIANCE SWAPS WITH AN ORNSTEIN-UHLENBECK PROCESS
    Cao, Jian-Peng
    Fang, Yan-Bing
    ANZIAM JOURNAL, 2017, 59 (01) : 83 - 102
  • [44] Parameter estimation for non-stationary reflected Ornstein-Uhlenbeck processes driven by α-stable noises
    Zhang, Xuekang
    Yi, Haoran
    Shu, Huisheng
    STATISTICS & PROBABILITY LETTERS, 2020, 156
  • [45] Parameter Estimation for a Bidimensional Partially Observed Ornstein-Uhlenbeck Process with Biological Application
    Favetto, Benjamin
    Samson, Adeline
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 200 - 220
  • [46] Maximum Likelihood Identification of an Ornstein-Uhlenbeck Model and Its CRLB
    Ye, Shida
    Bar-Shalom, Yaakov
    Willett, Peter
    Zaki, Ahmed
    2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024, 2024,
  • [47] Optimal dividends and bankruptcy procedures: Analysis of the Ornstein-Uhlenbeck process
    Wong, Hoi Ying
    Zhao, Jing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 150 - 166
  • [48] Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
    Carter, Simon
    Mujica-Parodi, Lilianne R.
    Strey, Helmut H.
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [49] Exact simulation of the Ornstein-Uhlenbeck driven stochastic volatility model
    Li, Chenxu
    Wu, Linjia
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 275 (02) : 768 - 779
  • [50] An Ornstein-Uhlenbeck Process-Driven Power System Dynamics
    Hirpara, Ravish H.
    Sharma, Shambhu N.
    IFAC PAPERSONLINE, 2015, 48 (30): : 409 - 414