Ultimate efficiency of experimental designs for Ornstein-Uhlenbeck type processes

被引:0
作者
Lacko, Vladimir [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Appl Math & Stat, Bratislava 84248, Slovakia
关键词
Ito stochastic differential equation; Exact design; Product covariance structure; Asymptotic Fisher information matrix; Efficiency; Gompertz model; MAXIMUM-LIKELIHOOD-ESTIMATION; REGRESSION PROBLEMS; EQUIDISTANT; GROWTH; MODEL;
D O I
10.1016/j.jspi.2014.02.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For processes governed by linear Ito stochastic differential equations of the form dX(t)=[a(t)+b(t)X(t)] dt+sigma(t) dW(t), we discuss the existence of optimal sampling designs with strictly increasing sampling times. We derive an asymptotic Fisher information matrix, which we take as a reference in assessing the quality of the finite-point sampling designs. The results are extended to a broader class of Ito stochastic differential equations. We give an example based on the Gompertz tumour growth law. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [21] On the reflected Ornstein-Uhlenbeck process with catastrophes
    Giorno, V.
    Nobile, A. G.
    di Cesare, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11570 - 11582
  • [22] Optimal trading strategies for Levy-driven Ornstein-Uhlenbeck processes
    Endres, S.
    Stuebinger, J.
    APPLIED ECONOMICS, 2019, 51 (29) : 3153 - 3169
  • [23] Exact pathwise simulation of multi-dimensional Ornstein-Uhlenbeck processes
    de la Cruz, H.
    Jimenez, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366 (366)
  • [24] Asymptotic behaviour of parametric estimation for nonstationary reflected Ornstein-Uhlenbeck processes
    Zang, Qingpei
    Zhu, Chenglian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 839 - 851
  • [25] Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation
    Zhang, Pu
    Xiao, Wei-lin
    Zhang, Xi-li
    Niu, Pan-qiang
    ECONOMIC MODELLING, 2014, 36 : 198 - 203
  • [26] A GENERAL LOWER BOUND OF PARAMETER ESTIMATION FOR REFLECTED ORNSTEIN-UHLENBECK PROCESSES
    Zang, Qing-Pei
    Zhang, Li-Xin
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (01) : 22 - 32
  • [27] Asymptotic Behaviour of the Trajectory Fitting Estimator for Reflected Ornstein-Uhlenbeck Processes
    Zang, Qingpei
    Zhang, Lixin
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) : 183 - 201
  • [28] ASYMPTOTICS OF MAXIMUM LIKELIHOOD PARAMETER ESTIMATES FOR GAUSSIAN PROCESSES: THE ORNSTEIN-UHLENBECK PRIOR
    Karvonen, Toni
    Tronarp, Filip
    Sarkka, Simo
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [29] Analytical Survival Analysis of the Ornstein-Uhlenbeck Process
    Giorgini, L. T.
    Moon, W.
    Wettlaufer, J. S.
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (06) : 2404 - 2414
  • [30] Shrinkage drift parameter estimation for multi-factor Ornstein-Uhlenbeck processes
    Nkurunziza, Severien
    Ahmed, S. Ejaz
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2010, 26 (02) : 103 - 124