Ultimate efficiency of experimental designs for Ornstein-Uhlenbeck type processes

被引:0
作者
Lacko, Vladimir [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Appl Math & Stat, Bratislava 84248, Slovakia
关键词
Ito stochastic differential equation; Exact design; Product covariance structure; Asymptotic Fisher information matrix; Efficiency; Gompertz model; MAXIMUM-LIKELIHOOD-ESTIMATION; REGRESSION PROBLEMS; EQUIDISTANT; GROWTH; MODEL;
D O I
10.1016/j.jspi.2014.02.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For processes governed by linear Ito stochastic differential equations of the form dX(t)=[a(t)+b(t)X(t)] dt+sigma(t) dW(t), we discuss the existence of optimal sampling designs with strictly increasing sampling times. We derive an asymptotic Fisher information matrix, which we take as a reference in assessing the quality of the finite-point sampling designs. The results are extended to a broader class of Ito stochastic differential equations. We give an example based on the Gompertz tumour growth law. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [1] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [2] PLANNING OF EXPERIMENTS FOR A NONAUTONOMOUS ORNSTEIN-UHLENBECK PROCESS
    Lacko, Vladimir
    PROBASTAT '11: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON PROBABILITY AND STATISTICS: DEDICATED TO PROFESSOR LUBOMIR KUBACEK IN RECOGNITION OF HIS EIGHTIETH BIRTHDAY, 2012, 51 : 101 - 113
  • [3] Intermittency of Superpositions of Ornstein-Uhlenbeck Type Processes
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Sikorskii, Alla
    Tesnjak, Irena
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (02) : 390 - 408
  • [4] On the spectral density of fractional Ornstein-Uhlenbeck processes
    Shi, Shuping
    Yu, Jun
    Zhang, Chen
    JOURNAL OF ECONOMETRICS, 2024, 245 (1-2)
  • [5] Ornstein-Uhlenbeck Processes of Bounded Variation
    Ratanov, Nikita
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (03) : 925 - 946
  • [6] Optimal designs for parameter estimation of the Ornstein-Uhlenbeck process
    Zagoraiou, Maroussa
    Antognini, Alessandro Baldi
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (05) : 583 - 600
  • [7] Sequential estimation for nonhomogeneous Ornstein-Uhlenbeck processes
    Zang, Qingpei
    Wang, Tao
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (08) : 1955 - 1962
  • [8] Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    Zhang, Guannan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 588 - 596
  • [9] Least squares estimators for reflected Ornstein-Uhlenbeck processes
    Han, Yuecaia
    Zhang, Dingwen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (21) : 7746 - 7759
  • [10] Characterising the nonequilibrium stationary states of Ornstein-Uhlenbeck processes
    Godreche, Claude
    Luck, Jean-Marc
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)