Duality for frames in Krein spaces

被引:5
作者
Ignacio Giribet, Juan [1 ,2 ]
Maestripieri, Alejandra [1 ,2 ]
Martinez Peria, Francisco [1 ,3 ]
机构
[1] Inst Argentino Matemat Alberto P Calderon CONICET, Saavedra 15 C1083ACA, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ingn, Av Paseo Colon 850 C1063ACV, Buenos Aires, DF, Argentina
[3] Univ Nacl La Plata, Dept Matemat, Fac Ciencias Exactas, CC 172,B1900ASK, La Plata, Buenos Aires, Argentina
关键词
Frames; Krein spaces; signal processing; PROJECTIONS; OPERATORS;
D O I
10.1002/mana.201700149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A J-frame for a Krein space H is in particular a frame for H (in the Hilbert space sense). But it is also compatible with the indefinite inner-product of H, meaning that it determines a pair of maximal uniformly definite subspaces, an analogue to the maximal dual pair associated with an orthonormal basis in a Krein space. This work is devoted to study duality for J-frames in Krein spaces. Also, tight and Parseval J-frames are defined and characterized.
引用
收藏
页码:879 / 896
页数:18
相关论文
共 29 条