Correlated optical and structural analyses of individual GaAsP/GaP core-shell nanowires

被引:7
作者
Himwas, C. [1 ,2 ]
Collin, S. [1 ]
Chen, H-L [1 ]
Patriarche, G. [1 ]
Oehler, F. [1 ]
Travers, L. [1 ]
Saket, O. [1 ]
Julien, F. H. [1 ]
Harmand, J-C [1 ]
Tchernycheva, M. [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, UMR CNRS 9001, Univ Paris Sud, 10 Blvd Thomas Gobert, F-91120 Palaiseau, France
[2] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Semicond Device Res Lab, 254 Phayathai Rd, Bangkok 10330, Thailand
基金
欧洲研究理事会;
关键词
nanowire; GaAsP/GaP core-shell; molecular beam epitaxy; cathodoluminescence; SOLAR-CELLS; SURFACE PASSIVATION; EFFICIENCY; ABSORPTION; IMPACT; GROWTH; GA;
D O I
10.1088/1361-6528/ab1760
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the structural and optical properties of GaAs0.7P0.3/GaP core-shell nanowires (NWs) for future photovoltaic applications. The NWs are grown by self-catalyzed molecular beam epitaxy. Scanning transmission electron microscopy (STEM) analyses demonstrate that the GaAsP NW core develops an inverse-tapered shape with a formation of an unintentional GaAsP shell having a lower P content. Without surface passivation, this unintentional shell produces no luminescence because of strong surface recombination. However, passivation of the surface with a GaP shell leads to the appearance of a secondary peak in the luminescence spectrum arising from this unintentional shell. The attribution of the luminescence peaks is confirmed by correlated cathodoluminescence and STEM analyses of the same NW.
引用
收藏
页数:10
相关论文
共 46 条
[1]   A GaAs Nanowire Array Solar Cell With 15.3% Efficiency at 1 Sun [J].
Aberg, Ingvar ;
Vescovi, Giuliano ;
Asoli, Damir ;
Naseem, Umear ;
Gilboy, James P. ;
Sundvall, Christian ;
Dahlgren, Andreas ;
Svensson, K. Erik ;
Anttu, Nicklas ;
Bjork, Mikael T. ;
Samuelson, Lars .
IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (01) :185-190
[2]   Nitride Surface Passivation of GaAs Nanowires: Impact on Surface State Density [J].
Alekseev, Prokhor A. ;
Dunaevskiy, Mikhail S. ;
Ulin, Vladimir P. ;
Lvova, Tatiana V. ;
Filatov, Dmitriy O. ;
Nezhdanov, Alexey V. ;
Mashin, Aleksander I. ;
Berkovits, Vladimir L. .
NANO LETTERS, 2015, 15 (01) :63-68
[3]  
[Anonymous], C QUANT SENS NAN EL
[4]   Direct Band Gap Wurtzite Gallium Phosphide Nanowires [J].
Assali, S. ;
Zardo, I. ;
Plissard, S. ;
Kriegner, D. ;
Verheijen, M. A. ;
Bauer, G. ;
Meijerink, A. ;
Belabbes, A. ;
Bechstedt, F. ;
Haverkort, J. E. M. ;
Bakkers, E. P. A. M. .
NANO LETTERS, 2013, 13 (04) :1559-1563
[5]   Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer [J].
Black, L. E. ;
Cavalli, A. ;
Verheijen, M. A. ;
Haverkort, J. E. M. ;
Bakkers, E. P. A. M. ;
Kessels, W. M. M. .
NANO LETTERS, 2017, 17 (10) :6287-6294
[6]   Gallium arsenide p-i-n radial structures for photovoltaic applications [J].
Colombo, C. ;
Heiss, M. ;
Graetzel, M. ;
Fontcuberta i Morral, A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[7]   Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy [J].
Colombo, C. ;
Spirkoska, D. ;
Frimmer, M. ;
Abstreiter, G. ;
Morral, A. Fontcuberta I. .
PHYSICAL REVIEW B, 2008, 77 (15)
[8]   Effect of a GaAsP Shell on the Optical Properties of Self-Catalyzed GaAs Nanowires Grown on Silicon [J].
Couto, O. D. D., Jr. ;
Sercombe, D. ;
Puebla, J. ;
Otubo, L. ;
Luxmoore, I. J. ;
Sich, M. ;
Elliott, T. J. ;
Chekhovich, E. A. ;
Wilson, L. R. ;
Skolnick, M. S. ;
Liu, H. Y. ;
Tartakovskii, A. I. .
NANO LETTERS, 2012, 12 (10) :5269-5274
[9]   Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires [J].
Glas, Frank .
PHYSICAL REVIEW B, 2006, 74 (12)
[10]   III-V nanowire arrays: growth and light interaction [J].
Heiss, M. ;
Russo-Averchi, E. ;
Dalmau-Mallorqui, A. ;
Tuetuencueoglu, G. ;
Matteini, F. ;
Rueffer, D. ;
Conesa-Boj, S. ;
Demichel, O. ;
Alarcon-Llado, E. ;
Fontcuberta i Morral, A. .
NANOTECHNOLOGY, 2014, 25 (01)