Improved Sobolev Embedding Theorems for Vector-Valued Functions

被引:3
|
作者
Ichinose, Takashi [1 ]
Saito, Yoshimi [2 ]
机构
[1] Kanazawa Univ, Fac Sci, Dept Math, Kanazawa, Ishikawa 9201192, Japan
[2] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2014年 / 57卷 / 02期
关键词
Sobolev inequality; Gagliardo-Nirenberg inequality; Improved Sobolev embedding theorem; Dirac-Sobolev inequality; Sobolev inequality for vector-valued functions; Dirac operator; DIV-CURL; DIRAC;
D O I
10.1619/fesi.57.245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give an extension of the improved Sobolev embedding theorem for single-valued functions to the case of vector-valued functions which is involved with the three-dimensional massless Dirac operator together with the three- or two-dimensional Weyl-Dirac (or Pauli) operator, the Cauchy-Riemann operator and also the four-dimensional Euclidian Dirac operator.
引用
收藏
页码:245 / 295
页数:51
相关论文
共 50 条
  • [31] Extension of vector-valued functions
    Frerick, Leonhard
    Jorda, Enrique
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (03) : 499 - 507
  • [32] VECTOR-VALUED ANALYTIC FUNCTIONS
    ETTER, DO
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 119 (02) : 352 - &
  • [33] Fuzzification of vector-valued functions
    Wu, Hsien-Chung
    FUZZY SETS AND SYSTEMS, 2022, 435 : 1 - 26
  • [34] Vector-valued meromorphic functions
    Bonet, J
    Jordá, E
    Maestre, M
    ARCHIV DER MATHEMATIK, 2002, 79 (05) : 353 - 359
  • [35] On learning vector-valued functions
    Micchelli, CA
    Pontil, M
    NEURAL COMPUTATION, 2005, 17 (01) : 177 - 204
  • [36] IDEALS OF VECTOR-VALUED FUNCTIONS
    ALLAN, GR
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1968, 18 : 193 - &
  • [37] EPIDIFFERENTIALS OF VECTOR-VALUED FUNCTIONS
    THIBAULT, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (02): : 87 - 90
  • [38] MEASURABILITY FOR VECTOR-VALUED FUNCTIONS
    SNOW, DO
    CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (04): : 613 - &
  • [39] Vector-valued measurable functions
    Bagheri-Bardi, G. A.
    TOPOLOGY AND ITS APPLICATIONS, 2019, 252 : 1 - 8
  • [40] Extenders for vector-valued functions
    Banakh, Iryna
    Banakh, Taras
    Yamazaki, Kaori
    STUDIA MATHEMATICA, 2009, 191 (02) : 123 - 150