Supereulerian digraphs

被引:16
作者
Hong, Yanmei [1 ]
Lai, Hong-Jian [2 ]
Liu, Qinghai [3 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[2] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
关键词
Supereulerian; GRAPHS;
D O I
10.1016/j.disc.2014.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. We give a necessary condition for a digraph to be supereulerian first and then characterize the digraph D which are not supereulerian under the condition that delta(+) (D)+ delta(-) (D) >= [V (D)] -4. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [41] Irregularity Notions for Digraphs
    Bensmail, Julien
    Filasto, Thomas
    Hocquard, Herve
    Marcille, Clara
    [J]. GRAPHS AND COMBINATORICS, 2025, 41 (03)
  • [42] Subdivisions of digraphs in tournaments
    Girao, Antonio
    Popielarz, Kamil
    Snyder, Richard
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 266 - 285
  • [43] The Wiener Index of Digraphs
    Wang, Kun
    Ning, Wenjie
    Pan, Xiangfeng
    [J]. ARS COMBINATORIA, 2020, 150 : 85 - 98
  • [44] λ′-Optimality of Bipartite Digraphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (17-18) : 701 - 705
  • [45] Oriented trees in digraphs
    Addario-Berry, Louigi
    Havet, Frederic
    Sales, Claudia Linhares
    Reed, Bruce
    Thomasse, Stephan
    [J]. DISCRETE MATHEMATICS, 2013, 313 (08) : 967 - 974
  • [46] Divisible Design Digraphs
    Crnkovic, Dean
    Kharaghani, Hadi
    [J]. ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 43 - 60
  • [47] Random Threshold Digraphs
    Reilly, Elizabeth
    Scheinerman, Edward
    Zhang, Yiguang
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02)
  • [48] Distance and size in digraphs
    Dankelmann, Peter
    [J]. DISCRETE MATHEMATICS, 2015, 338 (01) : 144 - 148
  • [49] Normally Regular Digraphs
    Jorgensen, Leif K.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04)
  • [50] Connectivity and Extendability in Digraphs
    Beasley, Leroy B.
    [J]. COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2020, 2022, 388 : 261 - 273