Supereulerian digraphs

被引:16
作者
Hong, Yanmei [1 ]
Lai, Hong-Jian [2 ]
Liu, Qinghai [3 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[2] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
关键词
Supereulerian; GRAPHS;
D O I
10.1016/j.disc.2014.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. We give a necessary condition for a digraph to be supereulerian first and then characterize the digraph D which are not supereulerian under the condition that delta(+) (D)+ delta(-) (D) >= [V (D)] -4. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [31] Homology of Digraphs
    Grigor'yan, A. A.
    Muranov, Yu. V.
    Jimenez, R.
    MATHEMATICAL NOTES, 2021, 109 (5-6) : 712 - 726
  • [32] Spectra of digraphs
    Brualdi, Richard A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2181 - 2213
  • [33] Antistrong digraphs
    Bang-Jensen, Jorgen
    Bessy, Stephan
    Jackson, Bill
    Kriesell, Matthias
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 68 - 90
  • [34] Pairs of forbidden subgraphs and 2-connected supereulerian graphs
    Cada, Roman
    Ozeki, Kenta
    Xiong, Liming
    Yoshimoto, Kiyoshi
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1696 - 1707
  • [35] Forbidden set of induced subgraphs for 2-connected supereulerian graphs
    Wang, Shipeng
    Xiong, Liming
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2792 - 2797
  • [36] On the Optimality of 3-Restricted Arc Connectivity for Digraphs and Bipartite Digraphs
    Zhang, Yaoyao
    Meng, Jixiang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (02) : 321 - 332
  • [37] The hamiltonian numbers in digraphs
    Chang, Ting-Pang
    Tong, Li-Da
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 694 - 701
  • [38] The Harary index of digraphs
    Jiang, Haining
    Meng, Jixiang
    Tian, Yingzhi
    ARS COMBINATORIA, 2015, 123 : 115 - 124
  • [39] Jumping robbers in digraphs
    Puchala, Bernd
    Rabinovich, Roman
    THEORETICAL COMPUTER SCIENCE, 2016, 655 : 58 - 77
  • [40] Recolouring reflexive digraphs
    Brewster, Richard C.
    Lee, Jae-baek
    Siggers, Mark
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1708 - 1721