Supereulerian digraphs

被引:16
作者
Hong, Yanmei [1 ]
Lai, Hong-Jian [2 ]
Liu, Qinghai [3 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[2] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
关键词
Supereulerian; GRAPHS;
D O I
10.1016/j.disc.2014.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. We give a necessary condition for a digraph to be supereulerian first and then characterize the digraph D which are not supereulerian under the condition that delta(+) (D)+ delta(-) (D) >= [V (D)] -4. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [21] Sufficient Ore type condition for a digraph to be supereulerian
    Dong, Changchang
    Meng, Jixiang
    Liu, Juan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [22] On Supereulerian 2-Edge-Coloured Graphs
    Jørgen Bang-Jensen
    Thomas Bellitto
    Anders Yeo
    Graphs and Combinatorics, 2021, 37 : 2601 - 2620
  • [23] Transformations of Digraphs Viewed as Intersection Digraphs
    Zamfirescu, Christina M. D.
    CONVEXITY AND DISCRETE GEOMETRY INCLUDING GRAPH THEORY, 2016, 148 : 27 - 35
  • [24] On Supereulerian 2-Edge-Coloured Graphs
    Bang-Jensen, Jorgen
    Bellitto, Thomas
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2601 - 2620
  • [25] Forbidden Pairs for Connected Even Factors in Supereulerian Graphs
    Panpan Wang
    Liming Xiong
    Graphs and Combinatorics, 2023, 39
  • [26] Forbidden Pairs for Connected Even Factors in Supereulerian Graphs
    Wang, Panpan
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [28] Perfect Digraphs
    Andres, Stephan Dominique
    Hochstaettler, Winfried
    JOURNAL OF GRAPH THEORY, 2015, 79 (01) : 21 - 29
  • [29] ? -Diperfect digraphs
    Silva, Caroline Aparecida de Paula
    Silva, Candida Nunes da
    Lee, Orlando
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [30] ON PACKABLE DIGRAPHS
    Goerlich, Agnieszka
    Zak, Andrzej
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 552 - 557