Control Strategy of Three-Phase Battery Energy Storage Systems for Frequency Support in Microgrids and with Uninterrupted Supply of Local Loads

被引:213
作者
Serban, Ioan [1 ]
Marinescu, Corneliu [1 ]
机构
[1] Transilvania Univ Brasov, Dept Elect Engn, Brasov 500036, Romania
关键词
Battery energy storage system (BESS); frequency control; inverter; microgrid (MG); seamless transfer; CONNECTED INVERTER; SEAMLESS TRANSFER; VOLTAGE CONTROL; POWER; STABILITY; AC;
D O I
10.1109/TPEL.2013.2283298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Frequency control in autonomous microgrids (MG) with high penetration of renewable energy sources represents a great concern to ensure the system stability. In this regard, this paper presents an enhanced control method for battery energy storage systems (BESS) to support the frequency of MG and with the ability of disconnecting from the MG to supplying in the island mode a local consumer. A frequency controller, combining a conventional droop control with an inertia emulation function, governs the BESS active power transfer during the primary frequency control level. The BESS may also provide voltage support in the point of common coupling with the MG. Moreover, the proposed BESS may compensate, partially or totally, the power absorbed by the local loads in order to improve the MG frequency response. When the MG power quality worsens below a certain level, in terms of voltage and frequency, the BESS detaches from the MG and continues to operate islanded. The reconnection is accomplished following a smoothly resynchronization of the local voltage with the MG, without disturbing the local loads supply. Additionally, this paper also discusses about the aspects related to the BESS management and its integration within the proposed system. The simulation and experimental results assess the feasibility of the proposed control solutions.
引用
收藏
页码:5010 / 5020
页数:11
相关论文
共 29 条
[1]  
[Anonymous], IEEE POWER TECH
[2]   Renewable energy sources and frequency regulation: survey and new perspectives [J].
Bevrani, H. ;
Ghosh, A. ;
Ledwich, G. .
IET RENEWABLE POWER GENERATION, 2010, 4 (05) :438-457
[3]   Overview of control and grid synchronization for distributed power generation systems [J].
Blaabjerg, Frede ;
Teodorescu, Remus ;
Liserre, Marco ;
Timbus, Adrian V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (05) :1398-1409
[4]   Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame [J].
Bojoi, RI ;
Griva, G ;
Bostan, V ;
Guerriero, M ;
Farina, F ;
Profumo, F .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2005, 20 (06) :1402-1412
[5]   Dynamic Stability of a Microgrid With an Active Load [J].
Bottrell, Nathaniel ;
Prodanovic, Milan ;
Green, Timothy C. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (11) :5107-5119
[6]  
Buso S., 2006, Digital Control in Power Electronics, DOI [DOI 10.2200/S00047ED1V01Y200609PEL002, 10.2200/S00047ED1V01Y200609PEL002.]
[7]   Single-Phase Inverter Control Techniques for Interfacing Renewable Energy Sources With Microgrid-Part I: Parallel-Connected Inverter Topology With Active and Reactive Power Flow Control Along With Grid Current Shaping [J].
Dasgupta, Souvik ;
Sahoo, Sanjib Kumar ;
Panda, Sanjib Kumar .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (03) :717-731
[8]  
Engler A, 2005, 2005 International Conference on Future Power Systems (FPS), P142
[9]   Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization [J].
Guerrero, Josep M. ;
Vasquez, Juan C. ;
Matas, Jose ;
Garci de Vicuna, Luis ;
Castilla, Miguel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (01) :158-172
[10]   An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme [J].
He, Jinwei ;
Li, Yun Wei ;
Guerrero, Josep M. ;
Blaabjerg, Frede ;
Vasquez, Juan C. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (11) :5272-5282