Parameters Approach Applied on Nonlinear Oscillators

被引:10
作者
Khan, Najeeb Alam [1 ]
Riaz, Fatima [1 ]
Khan, Nadeem Alam [1 ]
机构
[1] Univ Karachi, Dept Math Sci, Karachi 75270, Pakistan
关键词
AMPLITUDE-FREQUENCY FORMULATION;
D O I
10.1155/2014/624147
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We applied an approach to obtain the natural frequency of the generalized Duffing oscillator <($)double over dot> + u + alpha(3)u(3) + alpha(5)u(5) + alpha(7)u(7) + ... + alpha(n)u(n) = 0 and a nonlinear oscillator with a restoring force which is the function of a noninteger power exponent of deflection <($)double over dot> + alpha u vertical bar u vertical bar(n-1) = 0. This approach is based on involved parameters, initial conditions, and collocation points. For any arbitrary power of n, the approximate frequency analysis is carried out between the natural frequency and amplitude. The solution procedure is simple, and the results obtained are valid for the whole solution domain.
引用
收藏
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 2006, NONPERTURBATIVE METH
[2]  
[Anonymous], Q APPL MATH
[3]  
Barari A, 2012, SHOCK VIB, V19, P1415, DOI [10.1155/2012/950980, 10.3233/SAV-2012-0683]
[4]  
Bayat M, 2013, SHOCK VIB, V20, P43, DOI [10.1155/2013/549213, 10.3233/SAV-2012-0726]
[5]   A new method based on the harmonic balance method for nonlinear oscillators [J].
Chen, Y. M. ;
Liu, J. K. .
PHYSICS LETTERS A, 2007, 368 (05) :371-378
[6]   Multiple-parameters technique for higher accurate numerical solution of Duffing-harmonic oscillation [J].
Chen, Y. Z. .
ACTA MECHANICA, 2011, 218 (3-4) :217-224
[7]   Asymptotic methods for vibrations of the pure non-integer order oscillator [J].
Cveticanin, L. ;
Kovacic, I. ;
Rakaric, Z. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (09) :2616-2628
[8]   Oscillator with fraction order restoring force [J].
Cveticanin, L. .
JOURNAL OF SOUND AND VIBRATION, 2009, 320 (4-5) :1064-1077
[9]   Application of amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back [J].
Ganji, S. S. ;
Ganji, D. D. ;
Babazadeh, H. ;
Sadoughi, N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (02) :157-166
[10]  
He JH, 2008, INT J NONLIN SCI NUM, V9, P211