Isotopic composition of rainwater nitrate at Bermuda: The influence of air mass source and chemistry in the marine boundary layer

被引:65
作者
Altieri, K. E. [1 ,2 ,3 ]
Hastings, M. G. [1 ,2 ]
Gobel, A. R. [3 ]
Peters, A. J. [4 ]
Sigman, D. M. [3 ]
机构
[1] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[2] Brown Univ, Environm Change Initiat, Providence, RI 02912 USA
[3] Princeton Univ, Dept Geosci, Princeton, NJ 08540 USA
[4] Bermuda Inst Ocean Sci, St Georges, Bermuda
基金
美国国家科学基金会;
关键词
ATMOSPHERIC NITROGEN DEPOSITION; TROPOSPHERIC CHEMISTRY; PEROXYACETYL NITRATE; WET DEPOSITION; NORTH-ATLANTIC; UNITED-STATES; FRESH-WATER; SEA-SALT; OZONE; PRECIPITATION;
D O I
10.1002/jgrd.50829
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Emissions of anthropogenic nitrogen (N) to the atmosphere have increased tenfold since preindustrial times, resulting in increased N deposition to terrestrial and coastal ecosystems. The current sources of N deposition to the ocean, however, are poorly understood. To investigate the sources of nitrate in rainwater deposited to the ocean, two years of daily rainwater samples were collected on the island of Bermuda in the western North Atlantic. Air mass back trajectories were computed for each sample and two dominant regimes were identified: slow moving events that originate over the ocean and occur all year, and fast moving events that originate over the continental USA and occur primarily during the cool season (October-March). Marine-influenced air masses result in rainwater nitrate with lower concentrations, higher average δ15N, and lower average δ18O (4.4 μM, -1.1‰ versus N2 in air, and 69.0‰ versus Vienna SMOW, respectively) than those influenced by North American air masses (6.3 μM, -5.4‰, and 75.0‰). The δ15N decrease and concentration increase from marine to continental air masses are due to a change in NOx source, with increased anthropogenic inputs associated with continental air. We suggest that heterogeneous halogen chemistry in the marine boundary layer leads to isotopic fractionation. This causes higher δ15N-NO3- to be deposited near the coast and lower δ15N-NOx to be transported over the open ocean, yielding a low δ15N for anthropogenic NO 3- deposition. It is possible that this process also contributes to variations in δ15N-NO3- from marine air masses. There is a negative linear correlation (r2 = 0.58) between δ15N and δ18O which is driven by the seasonal change in trajectory influencing both the source NOx and the nitrate formation pathways. Key Points Stable isotope ratios of rainwater nitrate N and O were measured at Bermuda Coastal MBL chemistry leads to low δ15N anthropogenic NO3- Negative correlation observed in N and O isotopes unique to marine rainwater ©2013. American Geophysical Union. All Rights Reserved.
引用
收藏
页码:11304 / 11316
页数:13
相关论文
共 45 条
[1]   Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation [J].
Baker, A. R. ;
Weston, K. ;
Kelly, S. D. ;
Voss, M. ;
Streu, P. ;
Cape, J. N. .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2007, 54 (10) :1704-1720
[2]   Production and decay of ClNO2, from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments [J].
Behnke, W ;
George, C ;
Scheer, V ;
Zetzsch, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D3) :3795-3804
[3]   Oxygen isotopes in nitrate:: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration [J].
Böhlke, JK ;
Mroczkowski, SJ ;
Coplen, TB .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2003, 17 (16) :1835-1846
[4]   NANOGRAM NITRITE AND NITRATE DETERMINATION IN ENVIRONMENTAL AND BIOLOGICAL-MATERIALS BY VANADIUM(III) REDUCTION WITH CHEMI-LUMINESCENCE DETECTION [J].
BRAMAN, RS ;
HENDRIX, SA .
ANALYTICAL CHEMISTRY, 1989, 61 (24) :2715-2718
[5]   Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method [J].
Casciotti, KL ;
Sigman, DM ;
Hastings, MG ;
Böhlke, JK ;
Hilkert, A .
ANALYTICAL CHEMISTRY, 2002, 74 (19) :4905-4912
[6]   Organic nitrogen deposition on land and coastal environments: a review of methods and data [J].
Cornell, SE ;
Jickells, TD ;
Cape, JN ;
Rowland, AP ;
Duce, RA .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (16) :2173-2191
[7]   Impacts of atmospheric anthropogenic nitrogen on the open ocean [J].
Duce, R. A. ;
LaRoche, J. ;
Altieri, K. ;
Arrigo, K. R. ;
Baker, A. R. ;
Capone, D. G. ;
Cornell, S. ;
Dentener, F. ;
Galloway, J. ;
Ganeshram, R. S. ;
Geider, R. J. ;
Jickells, T. ;
Kuypers, M. M. ;
Langlois, R. ;
Liss, P. S. ;
Liu, S. M. ;
Middelburg, J. J. ;
Moore, C. M. ;
Nickovic, S. ;
Oschlies, A. ;
Pedersen, T. ;
Prospero, J. ;
Schlitzer, R. ;
Seitzinger, S. ;
Sorensen, L. L. ;
Uematsu, M. ;
Ulloa, O. ;
Voss, M. ;
Ward, B. ;
Zamora, L. .
SCIENCE, 2008, 320 (5878) :893-897
[8]   Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and northeastern United States [J].
Elliott, E. M. ;
Kendall, C. ;
Wankel, S. D. ;
Burns, D. A. ;
Boyer, E. W. ;
Harlin, K. ;
Bain, D. J. ;
Butler, T. J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (22) :7661-7667
[9]   Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition [J].
Elliott, E. M. ;
Kendall, C. ;
Boyer, E. W. ;
Burns, D. A. ;
Lear, G. G. ;
Golden, H. E. ;
Harlin, K. ;
Bytnerowicz, A. ;
Butler, T. J. ;
Glatz, R. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114
[10]   Shifts in Lake N:P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition [J].
Elser, James J. ;
Andersen, Tom ;
Baron, Jill S. ;
Bergstroem, Ann-Kristin ;
Jansson, Mats ;
Kyle, Marcia ;
Nydick, Koren R. ;
Steger, Laura ;
Hessen, Dag O. .
SCIENCE, 2009, 326 (5954) :835-837