Modeling and Visualizing Regular Human Mobility Patterns with Uncertainty: An Example Using Twitter Data

被引:70
|
作者
Huang, Qunying [1 ]
Wong, David W. S. [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Geog, Madison, WI 53706 USA
[2] George Mason Univ, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA
[3] Univ Hong Kong, Dept Geog, Hong Kong, Peoples R China
关键词
MTUP; regular activity patterns; representative space-time path; spatiotemporal variability and uncertainty; patrones de actividad regular; ruta representativa del espacio-tiempo; variabilidad e incertidumbre espaciotemporal; SPACE-TIME; TRAVEL PATTERNS; GIS TOOLKIT; VARIABILITY; AGGREGATION; SIMILARITY; MOVEMENTS;
D O I
10.1080/00045608.2015.1081120
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Traditional space-time paths show the spatiotemporal trajectories of individuals in one to several days. Based on data for such short periods, these space-time paths might not be able to show regular activity patterns, which are pertinent to various types of planning and policy analysis. Travel data gathered for longer periods might capture regular activity patterns, but footprints captured by these data also include irregular activities, introducing noises or uncertainty. Our objective is to determine the representative spatiotemporal trajectories of individuals, accounting for stochastic disturbances and spatiotemporal variability, but using activity data with longer duration. Therefore, we explore using Twitter data, which have relatively low and irregular spatial and temporal resolutions. This article introduces a methodology to construct individual representative space-time paths using various aggregation and spatiotemporal clustering techniques. To depict and visualize spatiotemporal trajectories with uncertain information, we propose space-time cones of variable sizes to reflect the spatial precision of the paths and use colors on the cones to represent the confidence level. To illustrate the proposed methodology, we use the geo-tagged tweets for an extended period. Our analysis indicates that the representative space-time path reasonably describes an individual's regular activity patterns. As visual elements, cones and cone colors effectively show the varying geographical precision along the path and changing certainty levels across different path segments, respectively. ???????, ????????????????????????????????, ???????????????????????????????????????, ?????????????, ???????????, ?????????, ???????????????, ?????????????, ????????????, ?????????????????, ????????????????????????? (Twitter) ??????????????, ?????????????????????????????????????????????, ?????????????, ??????????????, ???????????????????????????, ????????, ?????????????????, ???????, ????????????????????????, ???????????????????????????, ????????????????? Las rutas tradicionales del espacio-tiempo muestran las trayectorias espaciotemporales de los individuos entre uno y varios dias. Con base en datos para tan cortos periodos, estas rutas del espacio-tiempo podrian carecer de la capacidad de mostrar los patrones de las actividades regulares, las cuales son pertinentes a varios tipos de planificacion y analisis de politicas. Los datos sobre viaje recogidos sobre periodos mas largos podrian capturar, por otra parte, los patrones de las actividades regulares, aunque los rastros captados por estos datos tambien incluyen actividades irregulares, que agregan ruido o incertidumbre. Nuestro objetivo busca determinar las trayectorias espaciotemporales representativas de los individuos, tomando en cuenta perturbaciones estocasticas y variabilidad espaciotemporal, pero usando datos sobre actividades de una mayor duracion. Consecuentemente, exploramos la utilizacion de datos de Twitter, que tienen resoluciones espaciales y temporales relativamente bajas e irregulares. Este articulo introduce una metodologia para construir rutas individuales representativas del espacio-tiempo utilizando varias tecnicas de agregacion y agrupamiento espaciotemporal. Para representar y visualizar trayectorias espaciotemporales con informacion incierta, proponemos conos de espacio-tiempo de tamano variable para reflejar la precision espacial de las rutas, y usamos colores en los conos para representar el nivel de confianza. Para ilustrar la metodologia que proponemos usamos los trinos geo-etiquetados para un periodo prolongado. Nuestro analisis indica que la ruta representativa del espacio-tiempo describe razonablemente los patrones de actividad regular de un individuo. Por su condicion de elementos visuales, los conos y los colores de los conos muestran de manera efectiva la variable precision geografica a lo largo de la ruta y los cambiantes niveles de certeza a lo largo de diferentes segmentos de la ruta, respectivamente.
引用
收藏
页码:1179 / 1197
页数:19
相关论文
共 18 条
  • [1] Identifying human mobility patterns using smart card data
    Cats, Oded
    TRANSPORT REVIEWS, 2023, : 213 - 243
  • [2] Revealing temporal stay patterns in human mobility using large-scale mobile phone location data
    Yang, Xiping
    Fang, Zhixiang
    Xu, Yang
    Yin, Ling
    Li, Junyi
    Zhao, Zhiyuan
    TRANSACTIONS IN GIS, 2021, 25 (04) : 1927 - 1948
  • [3] Measuring the Diversity and Dynamics of Mobility Patterns Using Smart Card Data
    Liu, Chengmei
    Gao, Chao
    Xin, Yingchu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2018, PT II, 2018, 11062 : 438 - 451
  • [4] Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach
    Xu, Yang
    Shaw, Shih-Lung
    Zhao, Ziliang
    Yin, Ling
    Fang, Zhixiang
    Li, Qingquan
    TRANSPORTATION, 2015, 42 (04) : 625 - 646
  • [5] Unravelling individual mobility temporal patterns using longitudinal smart card data
    Cats, Oded
    Ferranti, Francesco
    RESEARCH IN TRANSPORTATION BUSINESS AND MANAGEMENT, 2022, 43
  • [6] Assessing dynamics of human vulnerability at community level - Using mobility data
    Xia, Chen
    Hu, Yuqing
    Chi, Guangqing
    Chen, Jianli
    INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2023, 96
  • [7] Understanding the Impacts of Human Mobility on Accessibility Using Massive Mobile Phone Tracking Data
    Chen, Bi Yu
    Wang, Yafei
    Wang, Donggen
    Li, Qingquan
    Lam, William H. K.
    Shaw, Shih-Lung
    ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 2018, 108 (04) : 1115 - 1133
  • [8] Understanding Collective Human Mobility Spatiotemporal Patterns on Weekdays from Taxi Origin-Destination Point Data
    Yang, Jing
    Sun, Yizhong
    Shang, Bowen
    Wang, Lei
    Zhu, Jie
    SENSORS, 2019, 19 (12)
  • [9] Transdimensional change-point modeling as a tool to investigate uncertainty in applied geophysical inference: An example using borehole geophysical logs
    Reading, Anya M.
    Gallagher, Kerry
    GEOPHYSICS, 2013, 78 (03) : WB89 - WB99
  • [10] Quantifying Different Modeling Frameworks Using Topological Data Analysis: A Case Study with Zebrafish Patterns
    Cleveland, Electa
    Zhu, Angela
    Sandstede, Bjorn
    Volkening, Alexandria
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (04): : 3233 - 3266