The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption

被引:102
作者
Liu, Zhen [1 ]
Du, Zhenyu [1 ]
Song, Hao [1 ]
Wang, Chuangye [2 ]
Subhan, Fazle [1 ,3 ]
Xing, Wei [1 ,2 ]
Yan, Zifeng [1 ]
机构
[1] China Univ Petr, CNPC, Key Lab Catalysis, Coll Chem Engn,State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
[3] Abdul Wali Khan Univ, Dept Chem, Mardan 23200, Kpk, Pakistan
基金
美国国家科学基金会;
关键词
Porous N-doped carbon; Urea formaldehyde resin; High N-containing; Narrow micropores; CO2; capture; ACTIVATED CARBON; CO2; CAPTURE; MESOPOROUS CARBON; GAS; ADSORBENTS; SORBENTS; SORPTION; METHANE; SILICA;
D O I
10.1016/j.jcis.2013.10.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
N-doped carbon material constitutes abundant of micropores and basic nitrogen species that have potential implementation for CO2 capture. In this paper, porous carbon material with high nitrogen content was simply fabricated by carbonizing low cost and widely available urea formaldehyde resin, and then followed by KOH activation. CO2 capture experiment showed high adsorption capacity of 3.21 mmol g(-1), at 25 degrees C under 1 atm for UFCA-2-600. XRD, SEM, XPS and FT-IR analysis confirmed that a graphitic-like structure was retained even after high temperature carbonization and strong base activation. Textural property analysis revealed that narrow micropores, especially below 0.8 nm, were effective for CO2 adsorption by physical adsorption mechanism. Chemical evolved investigation revealed that graphitic-like embedded basic nitrogen groups are generated from bridged and terminal amines of urea formaldehyde resin from thermal carbonization and KOH activation treatment, which is responsible for the enrichment of CO2 capacity by chemical adsorption mechanism. The relationship between CO2 adsorption capacity and pore size or basic N species was also studied, which turned out that both of them played crucial role by physical and chemical adsorption mechanism, respectively. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 46 条
[1]   Adsorption of CH4 and CO2 on Zr-metal organic frameworks [J].
Abid, Hussein Rasool ;
Pham, Gia Hung ;
Ang, Ha-Ming ;
Tade, Moses O. ;
Wang, Shaobin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 366 (01) :120-124
[2]   High-pressure adsorption of methane and carbon dioxide on coal [J].
Bae, Jun-Seok ;
Bhatia, Suresh K. .
ENERGY & FUELS, 2006, 20 (06) :2599-2607
[3]   Isothermal versus Non-isothermal Adsorption-Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas [J].
Belmabkhout, Youssef ;
Sayari, Abdelhamid .
ENERGY & FUELS, 2010, 24 (09) :5273-5280
[4]   COMPARISON OF ACTIVATED CARBON AND ZEOLITE 13X FOR CO2 RECOVERY FROM FLUE-GAS BY PRESSURE SWING ADSORPTION [J].
CHUE, KT ;
KIM, JN ;
YOO, YJ ;
CHO, SH ;
YANG, RT .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1995, 34 (02) :591-598
[5]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[6]   Evaluation of Activated Carbon Adsorbents for CO2 Capture in Gasification [J].
Drage, Trevor C. ;
Blackman, James M. ;
Pevida, Cova ;
Snape, Colin E. .
ENERGY & FUELS, 2009, 23 (5-6) :2790-2796
[7]   Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene [J].
Goettmann, Frederic ;
Fischer, Anna ;
Antonietti, Markus ;
Thomas, Arne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (27) :4467-4471
[8]  
Guo B., 2006, J. Nat. Gas Chem., V15, P223, DOI [DOI 10.1016/S1003-9953(06)60030-3, 10.1016/S1003-9953(06)60030-3]
[9]   Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture [J].
Hao, Guang-Ping ;
Li, Wen-Cui ;
Qian, Dan ;
Lu, An-Hui .
ADVANCED MATERIALS, 2010, 22 (07) :853-+
[10]   Applications of pore-expanded mesoporous silicas.: 3.: Triamine silane grafting for enhanced CO2 adsorption [J].
Harlick, PJE ;
Sayari, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (09) :3248-3255