A new neural-network-based scalar hysteresis model

被引:27
作者
Kuczmann, M [1 ]
Iványi, A [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Electromagnet Theory, H-1521 Budapest, Hungary
关键词
feedforward-type neural networks; Preisach model; scalar hysteresis model;
D O I
10.1109/20.996221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A neural network (NN)-based model of scalar hysteresis characteristics has been developed for modeling the behavior of magnetic materials. The virgin curve and a set of the first-order reversal branches can be stored preliminary in a system of three NNs. Different properties of magnetic materials can be simulated by a simple if-then type knowledge-based algorithm. Hysteresis characteristics of different materials predicted by the introduced model are compared with the results of the classical Preisach simulation technique. Comparisons are plotted in figures.
引用
收藏
页码:857 / 860
页数:4
相关论文
共 8 条
[1]   Identification of vector Preisach models from arbitrary measured data using neural networks [J].
Adly, AA ;
Abd-El-Hafiz, SK ;
Mayergoyz, ID .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6821-6823
[2]   Using neural networks in the identification of Preisach-type hysteresis models [J].
Adly, AA ;
Abd-El-Hafiz, SK .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (03) :629-635
[3]   Isotropic vector Preisach particle [J].
Füzi, J ;
Iványi, A .
PHYSICA B, 2000, 275 (1-3) :179-182
[4]  
Ivanyi A., 1997, Hysteresis Models in Electromagnetic Computations
[5]  
KUCZMANN M, 2001, P 10 INT S APPL EL M, P611
[6]  
KUCZMANN M, 2001, P IEEE INT WORKSH IN, P143
[7]   Magnetic hysteresis modeling via feed-forward neural networks [J].
Serpico, C ;
Visone, C .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (03) :623-628
[8]   Computer-aided simulation of Stoner-Wohlfarth model [J].
Szabó, Z ;
Iványi, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 215 :33-36