Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor-Recipient Matching?

被引:6
作者
Calleja Lozano, Rafael [1 ,2 ]
Hervas Martinez, Cesar [3 ]
Briceno Delgado, Francisco Javier [1 ,2 ]
机构
[1] Reina Sofia Univ Hosp, Gen & Digest Surg Dept, Liver Transplantat Unit, Cordoba 14004, Spain
[2] GC18 Translat Res Solid Organ Transplantat Surg M, Cordoba 14004, Spain
[3] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba 14014, Spain
来源
MEDICINA-LITHUANIA | 2022年 / 58卷 / 12期
关键词
donor-recipient matching; artificial intelligence; deep learning; artificial neural networks; random forest; liver transplantation outcomes; LEARNING ALGORITHMS; MODEL; ALLOCATION; MORTALITY; OUTCOMES; SCORE;
D O I
10.3390/medicina58121743
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Liver transplantation outcomes have improved in recent years. However, with the emergence of expanded donor criteria, tools to better assist donor-recipient matching have become necessary. Most of the currently proposed scores based on conventional biostatistics are not good classifiers of a problem that is considered "unbalanced." In recent years, the implementation of artificial intelligence in medicine has experienced exponential growth. Deep learning, a branch of artificial intelligence, may be the answer to this classification problem. The ability to handle a large number of variables with speed, objectivity, and multi-objective analysis is one of its advantages. Artificial neural networks and random forests have been the most widely used deep classifiers in this field. This review aims to give a brief overview of D-R matching and its evolution in recent years and how artificial intelligence may be able to provide a solution.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation [J].
Bertsimas, Dimitris ;
Kung, Jerry ;
Trichakis, Nikolaos ;
Wang, Yuchen ;
Hirose, Ryutaro ;
Vagefi, Parsia A. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2019, 19 (04) :1109-1118
[2]   Potential value and limitations of different clinical scoring systems in the assessment of short- and long-term outcome following orthotopic liver transplantation [J].
Boecker, Joerg ;
Czigany, Zoltan ;
Bednarsch, Jan ;
Amygdalos, Iakovos ;
Meister, Franziska ;
Santana, Daniel Antonio Morales ;
Liu, Wen-Jia ;
Strnad, Pavel ;
Neumann, Ulf Peter ;
Lurje, Georg .
PLOS ONE, 2019, 14 (03)
[3]   Artificial intelligence and liver transplantation: Looking for the best donor-recipient pairing [J].
Briceno, Javier ;
Calleja, Rafael ;
Hervas, Cesar .
HEPATOBILIARY & PANCREATIC DISEASES INTERNATIONAL, 2022, 21 (04) :347-353
[4]   Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study [J].
Briceno, Javier ;
Cruz-Ramirez, Manuel ;
Prieto, Martin ;
Navasa, Miguel ;
Ortiz de Urbina, Jorge ;
Orti, Rafael ;
Gomez-Bravo, Miguel-Angel ;
Otero, Alejandra ;
Varo, Evaristo ;
Tome, Santiago ;
Clemente, Gerardo ;
Banares, Rafael ;
Barcena, Rafael ;
Cuervas-Mons, Valentin ;
Solorzano, Guillermo ;
Vinaixa, Carmen ;
Rubin, Angel ;
Colmenero, Jordi ;
Valdivieso, Andres ;
Ciria, Ruben ;
Hervas-Martinez, Cesar ;
de la Mata, Manuel .
JOURNAL OF HEPATOLOGY, 2014, 61 (05) :1020-1028
[5]   Donor-recipient matching: Myths and realities [J].
Briceno, Javier ;
Ciria, Ruben ;
de la Mata, Manuel .
JOURNAL OF HEPATOLOGY, 2013, 58 (04) :811-820
[6]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[7]   Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation [J].
Dolores Ayllon, Maria ;
Ciria, Ruben ;
Cruz-Ramirez, Manuel ;
Perez-Ortiz, Maria ;
Gomez, Irene ;
Valente, Roberto ;
O'Grady, John ;
de la Mata, Manuel ;
Hervas-Martinez, Cesar ;
Heaton, Nigel D. ;
Briceno, Javier .
LIVER TRANSPLANTATION, 2018, 24 (02) :192-203
[8]   PREDICTING OUTCOMES AFTER LIVER-TRANSPLANTATION - A CONNECTIONIST APPROACH [J].
DOYLE, HR ;
DVORCHIK, I ;
MITCHELL, S ;
MARINO, IR ;
EBERT, FH ;
MCMICHAEL, J ;
FUNG, JJ .
ANNALS OF SURGERY, 1994, 219 (04) :408-415
[9]   Are There Better Guidelines for Allocation in Liver Transplantation? A Novel Score Targeting Justice and Utility in the Model for End-Stage Liver Disease Era [J].
Dutkowski, Philipp ;
Oberkofler, Christian E. ;
Slankamenac, Ksenija ;
Puhan, Milo A. ;
Schadde, Erik ;
Muellhaupt, Beat ;
Geier, Andreas ;
Clavien, Pierre A. .
ANNALS OF SURGERY, 2011, 254 (05) :745-753
[10]  
Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133