Third-Order Newton-Type Methods Combined with Vector Extrapolation for Solving Nonlinear Systems

被引:0
|
作者
Zhou, Wen [1 ]
Kou, Jisheng [2 ]
机构
[1] Hubei Vocat Tech Coll, Dept Fdn Courses, Xiaogan 432000, Hubei, Peoples R China
[2] Hubei Engn Univ, Sch Math & Stat, Xiaogan 432000, Hubei, Peoples R China
关键词
RATIONAL CUBIC METHODS; RECURRENCE RELATIONS; SEMILOCAL CONVERGENCE; ACCELERATION;
D O I
10.1155/2014/601745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a third-order method for solving the systems of nonlinear equations. This method is a Newton-type scheme with the vector extrapolation. We establish the local and semilocal convergence of this method. Numerical results show that the composite method is more robust and efficient than a number of Newton-type methods with the other vector extrapolations.
引用
收藏
页数:8
相关论文
共 8 条
  • [1] On a third-order Newton-type method free of bilinear operators
    Amat, S.
    Bermudez, C.
    Busquier, S.
    Plaza, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 639 - 653
  • [2] Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators
    Amat, Sergio
    Busquier, Sonia
    Bermudez, Concepcion
    Alberto Magrenan, Angel
    ALGORITHMS, 2015, 8 (03) : 669 - 679
  • [3] A new third-order iterative process for solving nonlinear equations
    Hernández, MA
    Salanova, MA
    MONATSHEFTE FUR MATHEMATIK, 2001, 133 (02): : 131 - 142
  • [4] Newton-type methods of high order and domains of semilocal and global convergence
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 142 - 154
  • [5] On two high-order families of frozen Newton-type methods
    Amat, S.
    Argyros, I.
    Busquier, S.
    Hernandez-Veron, M. A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (01)
  • [6] Semilocal convergence of a family of third-order Chebyshev-type methods under a mild differentiability condition
    Parida, P. K.
    Gupta, D. K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (15) : 3405 - 3419
  • [7] More Efficient Iterative Methods than Newton's Method for Solving Nonlinear Systems
    Ezquerro, J. A.
    Hernandez, M. A.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [8] Solving nonlinear integral equations of Fredholm type with high order iterative methods
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1449 - 1463