A theoretical model to determine intercalation entropy and enthalpy: Application to lithium/graphite

被引:32
作者
Perassi, Eduardo M. [1 ]
Leiva, Ezequiel P. M. [1 ]
机构
[1] Univ Nacl Cordoba, Fac Ciencias Quim, Dept Matemat & Fis, Inst Invest Fisicoquim Cordoba INFIQC, RA-5000 Cordoba, Argentina
关键词
Entropy; Intercalation; Lithium-ion battery; Lattice-gas; Monte Carlo; Graphite; LITHIUM-ION BATTERY; SCANNING-TUNNELING-MICROSCOPY; LATTICE-GAS MODEL; MOLECULAR-DYNAMICS; GRAPHITE; CELLS; 1ST-PRINCIPLES; TRANSITIONS; PROFILES; GRAPHENE;
D O I
10.1016/j.elecom.2016.02.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Intercalation compounds play a fundamental role to increase the capabilities of electrochemical cells to store energy. A new computational model is developed to calculate the intercalation entropy and enthalpy in electrochemical intercalation compounds. The new methodology is applied to the intercalation of lithium ions into graphite, finding a good agreement with experimental measurements. The main features of the experimental data are correctly reproduced, including the step in the intercalation entropy and enthalpy for the stage II to stage I transition. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [41] In situ conduction ESR and theoretical studies of graphite intercalation by antimony pentafluoride
    A. M. Ziatdinov
    A. G. Sviridova
    V. V. Sereda
    P. G. Skrylnik
    Applied Magnetic Resonance, 2009, 35
  • [42] Anisotropically tuning interfacial thermal conductance between graphite and poly(ethylene oxide) by lithium-ion intercalation: A molecular dynamics study
    Tian, Siyu
    Xu, Zhihao
    Wu, Shiwen
    Luo, Tengfei
    Xiong, Guoping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 195
  • [43] A theoretical evaluation of the effect of interlayer spacing and boron doping on lithium storage in graphite
    Luo, Gaixia
    Zhao, Jijun
    Wang, Baolin
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 : 212 - 217
  • [44] Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge
    Jalkanen, K.
    Aho, T.
    Vuorilehto, K.
    JOURNAL OF POWER SOURCES, 2013, 243 : 354 - 360
  • [45] Intercalation of CoO in S-Doped Graphite as High-Performance Anodes for Lithium-Ion Batteries
    Ma, Xinlong
    Song, Xinyu
    Tang, Yushu
    Qi, Chuanlei
    Ning, Guoqing
    Gao, Jinsen
    Li, Yongfeng
    ENERGY TECHNOLOGY, 2017, 5 (12) : 2244 - 2252
  • [46] Electrochemical intercalation of lithium into graphite: Influence of the solvent composition and of the nature of the lithium salt
    Naji, A
    Willmann, P
    Billaud, D
    CARBON, 1998, 36 (09) : 1347 - 1352
  • [47] Activity correction on electrochemical reaction and diffusion in lithium intercalation electrodes for discharge/charge simulation by single particle model
    Tatsukawa, Eiji
    Tamura, Kazuhiro
    ELECTROCHIMICA ACTA, 2014, 115 : 75 - 85
  • [48] Electrochemical studies of lithium intercalation into graphite film electrode for Li+-ion batteries
    Lin, CG
    Qiu, WH
    Liu, QG
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2000, 7 (01): : 48 - 50
  • [49] Lithium intercalation edge effects and doping implications for graphite anodes
    Peng, Chao
    Mercer, Michael P.
    Skylaris, Chris-Kriton
    Kramer, Denis
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7947 - 7955
  • [50] Synthesis of a novel lithium-europium graphite intercalation compound
    Hérold, C
    Pruvost, S
    Hérold, A
    Lagrange, P
    CARBON, 2004, 42 (10) : 2122 - 2124