Loop quantum corrected Einstein Yang-Mills black holes

被引:8
作者
Protter, Mason [1 ]
DeBenedictis, Andrew [2 ,3 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Simon Fraser Univ, Pacific Inst Math Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[3] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
关键词
SPHERICALLY SYMMETRIC-SOLUTIONS; MASS INFLATION; GEOMETRY; ENTROPY;
D O I
10.1103/PhysRevD.97.106009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R x S-2. Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.
引用
收藏
页数:10
相关论文
共 78 条
[11]   Tricritical behavior of the massive chiral Gross-Neveu model [J].
Boehmer, Christian ;
Thies, Michael ;
Urlichs, Konrad .
PHYSICAL REVIEW D, 2007, 75 (10)
[12]  
Bojowald M., ARXIV161008850
[13]   Signature change in loop quantum gravity: Two-dimensional midisuperspace models and dilaton gravity [J].
Bojowald, Martin ;
Brahma, Suddhasattwa .
PHYSICAL REVIEW D, 2017, 95 (12)
[14]   Covariance in models of loop quantum gravity: Spherical symmetry [J].
Bojowald, Martin ;
Brahma, Suddhasattwa ;
Reyes, Juan D. .
PHYSICAL REVIEW D, 2015, 92 (04)
[15]   Evolution of Λ black holes in the minisuperspace approximation of loop quantum gravity [J].
Brannlund, J. ;
Kloster, S. ;
DeBenedictis, A. .
PHYSICAL REVIEW D, 2009, 79 (08)
[16]   Mass inflation and chaotic behaviour inside hairy black holes [J].
Breitenlohner, P ;
Lavrelashvili, G ;
Maison, D .
NUCLEAR PHYSICS B, 1998, 524 (1-2) :427-443
[17]   STATIC SPHERICALLY SYMMETRICAL SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BREITENLOHNER, P ;
FORGACS, P ;
MAISON, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (01) :141-172
[18]   Classification of static, spherically symmetric solutions of the Einstein-Yang-Mills theory with positive cosmological constant [J].
Breitenlohner, P ;
Forgács, P ;
Maison, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (03) :569-611
[19]   Rotating solitons and nonrotating, nonstatic black holes [J].
Brodbeck, O ;
Heusler, M ;
Straumann, N ;
Volkov, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4310-4313
[20]  
Campiglia M., 2008, AIP C P 3 MEX M MATH, P52