Mild solutions to the dynamic programming equation for stochastic optimal control problems

被引:8
作者
Barbu, Viorel [1 ]
Benazzoli, Chiara [2 ]
Di Persio, Luca [3 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Univ Trento, Dept Math, Trento, Italy
[3] Univ Verona, Dept Comp Sci, Verona, Italy
关键词
Stochastic process; Optimal control; m-accretive operator; Cauchy problem; MODEL;
D O I
10.1016/j.automatica.2018.02.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show via the nonlinear semigroup theory in L-1(R) that the 1-D dynamic programming equation associated with a stochastic optimal control problem with multiplicative noise has a unique mild solution in a sense to be made precise. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:520 / 526
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 1975, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], 2012, DETERMINISTIC STOCHA
[3]  
[Anonymous], 2003, Stochastic Differential Equations
[4]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[5]  
Cordoni F., 2013, INT J PURE APPL MATH, P239
[6]  
Cox J., 1975, Notes on option pricing i: Constant elasticity of variance diffusions
[7]   AN INTERTEMPORAL GENERAL EQUILIBRIUM-MODEL OF ASSET PRICES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :363-384
[8]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[9]  
Hagan P, 2015, SPRINGER P MATH STAT, V110, P1, DOI 10.1007/978-3-319-11605-1_1